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Abstract

In regression analysis, it is difficult to uncover the dependence relationship between a re-

sponse variable and a covariate vector when the dimension of the covariate vector is high.

To reduce the dimension of the covariate vector, one approach is sufficient dimension re-

duction. Sufficient dimension reduction is based on the assumption that the response

variable relates to only a few linear combinations of the covariate vector. Thus, by re-

placing the covariate vector with these linear combinations, sufficient dimension reduction

achieves dimension reduction. The goal of sufficient dimension reduction is to estimate

the space spanned by these linear combinations of the covariate vector. We denote this

space by S.

In this thesis, we give an introductory review on three important sufficient dimension

reduction methods. They are Sliced Inverse Regression (SIR), Sliced Average Variance

Estimate (SAVE) and Principle Hessian Directions (pHd). Li proposed SIR in 1991. SIR

is a method that exploits the simplicity of the inverse regression. Given the univariate

response variable and the high dimensional covariate, it is much easier to regress the

covariate against the response variable than the other way around. Motivated by a theorem

that connects forward regression and inverse regression, SIR estimates S using inverse

regression lines. Since SIR uses first moments only, it fails when there exists symmetry

dependence between the response variable and the covariate. To make up for this defect,

Cook proposed SAVE in a comment on SIR in 1991. SAVE follows the general lines of

SIR but uses second moments as well as first moments to estimate S. pHd is also a second

moment method. Li developed pHd in 1992 based on the observation that the eigenvectors

for the Hessian matrices of the regression function are closely related to the basis vectors

of S. Therefore pHd provides an estimate of S by using these eigenvectors.

To compare these methods, a simulation study is presented at the end. From the simulation

results, SIR is the most efficient method and SAVE is the most time consuming method.

Since SIR fails when symmetry dependence exists, we recommend pHd when symmetry

dependence presents and SIR in other cases.
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Chapter 1

Introduction

With technological advances, datasets have grown in both size and complexity. One con-

sequence of increasing amounts of data is that we often need to relate a response variable

to a potentially large number of possible covariates. The high dimension of the covari-

ate space makes it difficult to uncover this relationship. To reduce the dimension of the

covariate space, two major approaches are developed based on different assumptions.

The first approach is variable selection. Variable selection is used when researchers believe

that among all available predictors, only a few have explanatory effect. Thus, variable se-

lection reduces the number of covariates by identifying and removing the covariates that

have non explanatory effect. The second approach is sufficient dimension reduction. Suffi-

cient dimension reduction, on the other hand, assumes that each covariate has explanatory

effect, but the explantory effect is only represented through a few linear combinations of

covariates. Therefore, sufficient dimension reduction aims to find these linear combina-

tions. By replacing the collection of covariates with these linear combinations, sufficient

dimension reduction achieve dimension reduction of the covariate space.

In this thesis, we focus on the second approach: sufficient dimension reduction.

1.1 Problem set up

Throughout the thesis, we denote the response variable as y ∈ R and the covariate vector

as x = (x1, . . . , xp)
T ∈ Rp.

1



Introduction 2

Given the assumption of sufficient dimension reduction, the main problem of sufficient

dimension reduction can be described by the model

y = f(βT1 x, β
T
2 x, . . . , β

T
k x, ε), (1.1)

where β’s are unknown column vectors of the matrix Φ := (β1, β2, . . . , βk), ε is independent

of x, and f is an arbitrary unknown function on Rk+1. If we can find Φ, we can replace

p dimensional covariate x with βT1 x, β
T
2 x, . . . , β

T
k x. Since k is typically much smaller than

p, we hence achieve dimension reduction.

However, Φ is not identifiable. Let S(A) be the space spanned by columns of an arbitrary

matrix A. We observe that if (1.1) holds, then it also holds when we replace Φ with any

matrix A such that S(A) = S(Φ). Therefore, it is appropriate to identify S(Φ) instead.

We call a subspace S(Φ) satisfying (1.1) a dimension reduction subspace (DRS) (Li, 1991).

Because S(Ip) is by definition a DRS, DRS always exists and is not always unique.

To achieve maximum dimension reduction, we are interested in finding a minimum DRS.

A minimum DRS Smin is a DRS such that dim(Smin) ≤ dim(Sdrs) for all DRSs Sdrs. As

we will see in Chapter 3, a minimum dimension reduction subspace may not be unique,

leading to complications at later stages. In order to deal with this issue, we adopt Cook’s

idea (Cook, 2009) and introduce the concept of central dimension reduction subspaces

(or central subspaces), denoted as Sy|x. A central subspace, when exists, is the unique

minimum dimension reduction subspace. Since central subspaces exist under various rea-

sonable conditions (Cook, 1994a, 1996), we restrict ourselves to the class of regressions

for which the central subspace exist to ensure the uniqueness of the minimum dimension

reduction subspace. Thus, we conclude the goal of sufficient dimension reduction is to find

the central subspace of a problem of interest. More details are provided in Chapter 3.

1.2 Project outline

The purpose of this thesis is to provide readers with an introductory review on three

sufficient dimension reduction (SDR) methods, which are Sliced Inverse Regression (SIR)

(Li, 1991), Sliced Average Variance Estimation (SAVE) (Cook and Weisberg, 1991), and

Principal Hessian Directions (pHd) (Li, 1992; Cook, 1998). In particular, we want to see

how we can use these methods to at least partially recover the central subspace Sy|x to

achieve dimension reduction.
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The rest of the thesis is organized in the following way. Chapter 2 is a preparation chapter.

It gives a short introduction to elliptically contoured distributions and their properties.

Since elliptically contoured distributions are closely related to the prerequisites of many

SDR methods, studying them should help us gain a better understanding of SDR methods

later.

Chapter 3-6 are about SDR methods. Chapter 3 sets up a theoretical framework for

our studies of SDR methods. It studies central subspaces in detail by addressing the

key questions: What are central subspaces? Why do we need central subspaces? And

when do central subspaces exist? Discussions of the SDR methods SIR, SAVE and pHd

are contained in Chapter 4 and Chapter 5. For each method, we not only examine the

theoretical foundations, but also provide a step by step algorithm for estimating the central

subspace Sy|x. Since each method has its advantages and disadvantages, a simulation study

for testing and comparing the SDR methods SIR, SAVE and pHd is presented in the final

chapter.





Chapter 2

Elliptically contoured distributions

Before we delve into specific sufficient dimension reduction (SDR) methods, we first in-

troduce elliptically contoured distributions, which, as we will show in later chapters, are

closely related to the key prerequisites required for most SDR methods to work. Ellipti-

cally contoured distributions are a natural generalization of Gaussian distributions. When

the covariate has an elliptically contoured distribution, many SDR methods are able to

exploit the nice properties of elliptically contoured distributions inherited from Gaussian

distributions to attain neat and compact results. In this chapter, we examine the basic

but essential properties of elliptically contoured distributions.

2.1 Definition and Characterisation

Despite being a generalization of Gaussian distributions, elliptically contoured distribu-

tions are generally treated as an extension of spherical distributions. In this section, we

adopt this way of classifying them and start by introducing spherical distributions follow-

ing the ideas of Kelker (1970) and Frahm (2004).

Definition 2.1 (Spherical distribution). Let X be a p-dimensional random vector. X has

a p-dimensional spherical distribution if and only if, for all Rp×p orthonormal matrices Γ,

X and ΓX have the same distribution such that X =d ΓX.

Spherical distributions are also referred to as radial distributions. To better understand

this definition, we first note that when a random vector X satisfies X =d ΓX for any p

5



Elliptically contoured distributions 6

by p orthonormal matrix Γ, X is rotationally symmetric. As a result, the above definition

can be equally stated as follows.

Let X be a p-dimensional random vector. X has a p-dimensional spherical distribution if

and only if it is rotationally symmetric.

Recall that if we let U (p) be a p-dimensional random vector that is uniformly distributed

on the unit sphere

Sp−1 := {x ∈ Rp : ‖x‖2 = 1},

and assume R is a nonnegative random variable independent of U (p), then every p-

dimensional random vector Y with the form of Y := RU is rotationally symmetric. Since

spherical distributions and rotationally symmetric distributions are identical, Y is spher-

ically distributed. Hence, we have found an explicit form that ensures a random vector

follows a spherical distribution. A question arises naturally: can any spherically dis-

tributed random vector X be written in the form of RU? If this is the case, the analysis

of spherical distributions can be conducted in a straightforward manner, as we can work

with U and R directly instead.

In order to answer this question, we consider a spherically distributed p-dimensional ran-

dom vector X. Because X is, by definition, rotationally symmetric, for any t ∈ Rp, the

equality

cos(](t,X)) =d cos(](v, U (p))) =d v
TU (p) (2.1)

holds for every v ∈ Sp−1 and random vector U (p) uniformly distributed on Sp−1 (Frahm,

2004). Here, ](t,X) measures the angle between p-dimensional vector t and the random

vector X and we have used the fact that tTX = ‖t‖2 · ‖X‖2 · cos(](t,X)). As a result of

this equality, the characteristic function of cos(](t,X)) satisfies

t 7−→ ϕcos(](t,X))(s) = ϕvTU(p)(s)

:= E{exp(isvTU (p))} = E{exp(i(sv)TU (p))}

= ϕU(p)(sv)

(2.2)

where v ∈ Sp−1 is arbitrary and ϕU(p) is the characteristic function of U (p). This relation-

ship between the characteristics functions of cos(](t,X)) and U (p) will lead to our desired

result. To see this, we first write the characteristic function of X in terms of ϕcos(](t,X))
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as follows

t 7−→ ϕX(t) = E{exp(itTX)} = E{exp(i · ‖X‖2 · ‖t‖2 · cos(](t,X)))}.

Then applying the law of total expectations to derive that

t 7−→ ϕX(t) = EX [E{exp(i · ‖X‖2 · ‖t‖2 · cos(](t,X))) | ‖X‖2 = r}]

=

∫ ∞
0

E{exp(i · r‖t‖2 cos(](t,X)))}dF‖X‖2(r)

=

∫ ∞
0

ϕcos(](t,X))(r‖t‖2)dF‖X‖2(r),

where F‖X‖2 is the cumulative distribution function (c.d.f) of ‖X‖2. Then by the relation-

ship (2.2), we have

t 7−→ ϕX(t) =

∫ ∞
0

ϕcos(](t,X))(r‖t‖2)dF‖X‖2(r)

=

∫ ∞
0

ϕU(p)(r‖t‖2 ·
t

‖t‖2
)dF‖X‖2(r).

Here, we have replaced the v in (2.2) with t/‖t‖2 ∈ Sp−1. Finally, we obtain

t 7−→ ϕX(t) =

∫ ∞
0

ϕU(p)(r‖t‖2 ·
t

‖t‖2
)dF‖X‖2(r)

=

∫ ∞
0

ϕU(p)(rt)dF‖X‖2(r)

=

∫ ∞
0

ϕrU(p)(t)dF‖X‖2(r)

for any r ≥ 0. We note that the last line of above equation can be viewed as the charac-

teristic function of the random vector RU (p), where R is a nonnegative random variable

independent of U (p) and having the same distribution as ‖X‖2. We thus have successfully

shown that any spherical distributed p-dimensional random vector X has the representa-

tion X =d RU (p). Once p is given, U (p) is fully determined and the spherical distribution

of X is completely decided by the non-negative random variable R. Therefore, R is often

called “generating random variable” or “generating variate” of X (Frahm, 2004).

Remark 2.2. From the definition of spherical distributions, we see that a spherical distribu-

tion is invariant under rotation. This implies that spherical distributions are distributions

that are centered about zero. Thus, when the expectation of a spherical distribution exists,

the expectation has be to 0. We can prove this statement by using either the definition or

the stochastic representation of spherical distributions.



Elliptically contoured distributions 8

Assume a p-dimensional random vector X is spherically distributed and its mean exists.

We first show E(X) = 0 by definition. Let Γ1 6= Γ2 be orthonormal matrices. Since X =d

Γ1X =d Γ2X, E(X) = E(Γ1X) = E(Γ2X). That is E((Γ1 − Γ2)X) = (Γ1 − Γ2)E(X) = 0.

Because we know that (Γ1 − Γ2) 6= 0, we conclude that E(X) = 0. On the other hand, we

have shown that X has the representation X =d RU (p). Since R is independent of U (p)

and E(U (p)) = 0, we also derive that E(X) = E(R) · E(U (p)) = 0.

Remark 2.3. Given the fact that every spherical distribution has the representation X =d

RU (p), we can easily deduce the generating variable for standard normal distributions.

Assume X ∼ Np(0, Ip) and has the representation X =d RU (p) as defined above. Then

we have

χ2
p =d X

TX = R2U (p)TU (p) =a.s. R2.

It follows that the generating variable of a standard normal distribution is
√
χ2
p, the square

root of a random variable with a chi-squared distribution with p degrees of freedom.

In addition to the generating random variable R, we can also find the characteristic

generator function of a spherically distributed random vector X by closely examining the

characteristic function ϕX and exploring the RU (p) representation. The key observation

to make is that, for the characteristic function ϕU(p) of U (p), we can always find a function

φU(p) such that ϕU(p)(sv) = φU(p)(s2) for every s ∈ R. As mentioned in (2.2), we note

that, given that the point v is arbitrary, ϕU(p)(sv) only depends on s. In addition, since

ϕU(p)((−s)v) = ϕU(p)(s(−v)), ϕU(p)(sv) is independent of the sign of s and hence can be

treated as a function of s2. We thus obtain

t 7−→ ϕX(t) =

∫ ∞
0

ϕrU(p)(t)dFR(r)

=

∫ ∞
0

ϕU(p)(rt)dFR(r)

=

∫ ∞
0

ϕU(p)(r‖t‖2 ·
t

‖t‖2
)dFR(r)

=

∫ ∞
0

φU(p)(r2‖t‖22)dFR(r).

(2.3)

Consequently, ϕX can be equally represented through

s 7−→ φX(s) :=

∫ ∞
0

φU(p)(r2s)dFR(r) s ≥ 0 (2.4)

with

t 7−→ ϕX(t) = φX(‖t‖22) = φX(tT t). (2.5)



Elliptically contoured distributions 9

Moreover, we observe that if a p-dimensional random vector X has characteristic function

ϕ(t) satisfying ϕ(t) = φ(tT t) for some function φ, then X is spherically distributed by

definition, as the characteristic function implies thatX =d ΓX for all orthonormal matrices

Γ ∈ Rp×p.

Combining previous results, we conclude a random vector X belongs to the class of spheri-

cal distributions if and only if the equality (2.5) holds. As a result, φX is generally referred

to as “characteristic generator” of X (Schmidt, 2002). We point out that the characteristic

generator captures all the information contained in R.

Remark 2.4. It is easy to deduce that the characteristic generator of a random vector X

with standard normal distribution is φX(s) = exp(−s/2) given that ϕX(t) = exp(−tT t/2)

and φX(tT t) = ϕX(t).

We now extend our discussions to elliptically contoured distributions. As we mentioned

at the beginning, elliptical contoured distributions are a generalization of spherical dis-

tributions. To be more specific, we will see shortly that every affine transformation of

a spherically distributed random vector follows an elliptically contoured distribution and

the converse is also true. Before we give proofs for these statements, we first give a formal

definition of elliptically contoured distributions.

Definition 2.5 (Elliptically contoured distributions). Let X be a p-dimensional random

vector. X is said to be “elliptically distributed” or just “elliptical” if and only if there

exits a constant vector µ ∈ Rp, a symmetric positive semidefinite matrix Σ ∈ Rp×p, and

a function φ : R+ → R such that the characteristic function ϕX−µ(t) of X − µ satisfies

ϕX−µ(t) = φ(tTΣt). We write X ∼ ECp(µ,Σ, φ), where EC is short for elliptically

contoured.

Thus, to show that every affinely transformed spherical random vector is elliptically dis-

tributed, it is sufficient to find the characteristic function of the transformed random vector

and check the existence of the function φ, satisfying ϕX−µ(t) = φ(tTΣt). Based upon this

idea, we have the following proposition.

Proposition 2.6. Let X be a k-dimensional spherically distributed random vector with

characteristic generator φX . Also assume Λ ∈ Rp×k is an arbitrary matrix and µ ∈ Rp is

an arbitrary vector. Then Y := µ+ ΛX has the characteristic function

t 7−→ ϕY (t) = exp(itTµ) · φX(tTΣt), t ∈ Rp,
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where Σ := ΛΛT . Consequently, Y is elliptically distributed.

Proof. We prove this proposition by directly computing the characteristic function of Y .

We have

t 7−→ ϕY (t) = E(exp(itT (µ+ ΛX))) = exp(itTµ) · ϕX(ΛT t)

= exp(itTµ) · φX((ΛT t)T (ΛT t)) = exp(itTµ) · φX(tTΣt).

It follows

t 7−→ ϕY−µ(t) = ϕX(ΛT t) = φX(tTΣt),

so Y has an elliptically contoured distribution by definition.

Remark 2.7. In fact, this proposition partly motivates the definition of elliptically con-

toured distribution above and, to some extent, serves as a basis to define elliptically con-

toured distributions with a focus on the characteristic generators. Further, we emphasize

that Y need not necessarily have the same dimension as X.

For the other direction, to show that every elliptically contoured distribution is an affinely

transformed spherical distribution, we use the stochastic representation theorem. We recall

that every spherically distributed random vector X has the representation X =d RU (k).

The stochastic representation theorem proves the statement by showing that, under certain

conditions, every Y ∼ ECp(µ,Σ, φ) has the stochastic representation Y =d µ +RΛU (k),

which is just the affine transformation of the spherically distributed random vector RU (k).

Theorem 2.8 (Stochastic representation theorem). Let Y be p-dimensional random vec-

tor. Then Y ∼ ECp(µ,Σ, φ) with rank(Σ) = k if and only if

Y =d µ+RΛU (k)

where R is a nonnegative random variable, U (k) is k-dimensional random vector uniformly

distributed on Sk−1 that is independent of R, µ ∈ Rp and Λ ∈ Rp×k with rank(Λ) = k.

Proof. We have proved the “if” direction in the proposition above. To show the “only

if” direction, we note that every rank k symmetric positive semidefinite matrix Σ can be

decomposed as Σ = ΛΛT where Λ ∈ Rp×k. Then, define the random vector

X := Λ†(Y − µ),



Elliptically contoured distributions 11

where Λ† := (ΛTΛ)−1ΛT is the Moore-Penrose pseudoinverse of Λ. Calculating the char-

acteristic function of X, we obtain

t 7−→ ϕX(t) = ϕY−µ((Λ†)T t) = φ(tTΛ†Σ(Λ†)T t)

= φ(tT (ΛTΛ)−1ΛT (ΛΛT )Λ(ΛTΛ)−1t) = φ(tT t), t ∈ Rk.
(2.6)

This implies that X is spherically distributed with the characteristic generator φ(tT t) and

can be represented as X =d RU (k). Hence Y = µ+ΛX =d µ+RΛU (k) ∼ ECp(µ,Σ, φ).

We make some important comments about the stochastic representations of elliptically

contoured distributions.

• Firstly, although each elliptically contoured distributed random vector can be formu-

lated in stochastic representation, it should be emphasized that this representation

is not unique. To be more specific, a stronger statement has been proved by Cam-

banis et al. (1981). It states that, given X is nondegenerate, if X ∼ ECp(µ,Σ, φ)

and X ∼ ECp(µ0,Σ0, φ0), then there exists a constant c > 0 such that Σ0 = cΣ and

φ0(·) = φ(c−1·) while µ = µ0. It is possible for Σ and φ to be different from Σ0 and

φ0 but the differences are up to a constant.

• Secondly, we note that an elliptically distributed random vector X ∼ ECp(0, Ip, φ)

with µ = 0 and Σ = Ip is spherically distributed as X = 0+RIpU (p) = RU (p). Using

the same line of reasoning, we also find that affine transformations of elliptically dis-

tributed random vectors are also elliptically distributed. Consider Y ∼ ECp(µ,Σ, φ)

with stochastic representation Y =d µ + RΛU (k) where Λ ∈ Rp×k and ΛΛT = Σ.

Further, let α ∈ Rm and A ∈ Rm×p. Assume the random vector W is transformed

from Y by

W = α+AY.

Then we obtain

W =d α+A(µ+RΛU (k)) = (α+Aµ) +RAΛU (k),

which implies W ∼ ECm(α + Aµ,AΣAT , φ). That is, W is elliptically distributed

with ϕW−(α+Aµ)(t) = φY (tTAΣAT t). In conclusion, the class of elliptical contoured

distributions is closed under affine transformations.
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• Finally, the stochastic representation of an elliptically contoured distribution is gen-

erally preferred to its characteristic representation. Not only does the stochastic

representation give a straightforward geometric interpretation of an elliptically dis-

tributed random vector X (µ determines the location of X, R specifies the shape,

especially the tailedness of the distribution while Λ and U (k) together produces den-

sity surface), but also the explicit representations facilitate the simulation process

of X (Frahm, 2004).

Remark 2.9. Multivariate normal distributions are a special case of elliptically contoured

distributions. To see this, let X ∼ Np(µ,Σ) be a random vector with multivariate normal

distribution, where µ ∈ Rp and Σ ∈ Rp×p is positive definite with the decomposition

Σ = ΛΛT with Λ ∈ Rp×k. Then from remark 2.3, we can derive that

X =d µ+
√
χ2
kΛU

(k)

and hence X is elliptically distributed. In addition, from Remark 2.4, we have the char-

acteristic function ϕX−µ of X − µ satisfies t 7−→ ϕX−µ(t) = exp(tTΣt).

So far, we have introduced elliptically contoured distributions as an extension of spherical

distributions. We have also shown that elliptically contoured distributions have stochastic

representations, that is they can be represented as an affine transformation of a spherical

distributionRU (k). With this explicit expression for elliptically contoured random vectors,

we can easily develop the basic properties of this class of distributions, covered in the

following section.

2.2 Basic properties

In this section, we study the density functions, marginal distribution and conditional

distributions of elliptically contoured distributions. The main focus will be on the condi-

tional distributions as their properties are the key for most sufficient dimension reduction

methods to work.
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2.2.1 Density functions

Adopting the same analysing procedure as that used above, to find the density function of

the elliptically contoured distributions, we first derive the density function of the spherical

distributions.

Theorem 2.10 (Spherical distributions). Let X be a p-dimensional random vector with

stochastic representation X =d RU (p) where the c.d.f of R is absolutely continuous. Then

the c.d.f of X is given by

x 7−→ fX(x) =
Γ(p2)

2πp/2
· ‖x‖−(p−1)

2 · fR(‖x‖2), x ∈ Rp \ {0},

where fR is the p.d.f of R.

Proof. To start, we recall that the density function of a p-dimensional random vector

uniformly distributed on the unit hypersphere Sp−1 is
Γ( p

2
)

2πp/2 and that U (p) and R are

independent. Thus, given that the c.d.f of R is absolutely continuous, we have that the

density function of the pair (r, u) is

(r, u) 7−→ f(R,U(p))(r, u) =
Γ(p2)

2πp/2
· fR(r), r > 0, u ∈ Sp−1.

In order to find the density function of X =d RU (p), we define the transformation h :

(0,∞)× Sp−1 → Rp \ {0} by h(r, u) = ru. Clearly, h is injective. We thus have the p.d.f

of X as

x 7−→ fX(x) = fR,U(p)(h−1(x)) · |Jh|−1, x ∈ Rp \ {0}, (2.7)

where Jh is the Jacobian determinant of ∂ru/∂(r, u)T . Since for any u ∈ Sp−1, ‖u‖ = 1,

it follows that ‖ru‖ = r. As a result, h−1(x) = (‖x‖2, x/‖x‖2). When the Jacobian Jh is

considered, direct calculation gives us

|Jh| = det(

1 0

0 rIp−1

) = rp−1 = ‖x‖p−1
2 .

Here we have used the fact that ∂ru/∂r has unit length and is orthogonal to ∂ru/∂uT on

Sp−1
r := {t ∈ Rp : ‖t‖ = r}, the hypersphere with radius r.
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Substituting the above results into (2.7), we have derived the p.d.f. of X as:

x 7−→ fX(x) = fR,U(p)(‖x‖2, x/‖x‖2) · ‖x‖p−1
2

=
Γ(p2)

2πp/2
· ‖x‖−(p−1)

2 · fR(‖x‖2), x ∈ Rp \ {0}.
(2.8)

Remark 2.11. We can apply this theorem to derive the density function of a standard

normally distributed random vector X ∼ Np(0, Id). Given that the p.d.f of χ2
p is

t 7−→ f(t) =
t
p
2
−1 · exp(− t

2)

2p/2 · Γ(p2)
, t ≥ 0,

and R =
√
χ2
p, we get

t 7−→ fR(t) = 2t · f(t2).

Then it follows from the above theorem, the density function of X is

x 7−→ fX(x) =
Γ(p2)

2πp/2
· ‖x‖−(p−1)

2 · 2‖x‖2 · f(xTx)

=
Γ(p2)

2πp/2
· ‖x‖−(p−1)

2 · 2‖x‖2 ·
(xTx)

p
2
−1 · exp(−xT x

2 )

2p/2 · Γ(p2)

=
1

(2π)p/2
· exp(−x

Tx

2
).

The result for spherical distributions can be easily extended to elliptically contoured dis-

tributions with a positive definite Σ.

Theorem 2.12 (Elliptically contoured distributions). Let X ∼ EC(µ,Σ, φ) where µ ∈ Rp

and Σ ∈ Rp×p is symmetric positive definite. Equivalently, we can write X in its stochastic

representation X =d µ +RΛU (p) where ΛΛT = Σ and Λ ∈ Rp×p. Assume the c.d.f of R

is absolutely continuous, then the p.d.f of X is given by

x 7−→ fX(x) = |det(Σ)|−1/2 · gR((x− µ)TΣ−1(x− µ)), x− µ ∈ SΛ \ {0}

where

t 7−→ gR(t) :=
Γ(p2)

2πp/2
·
√
t
−(p−1) · fR(

√
t), t > 0,

SΛ is the linear subspace of Rp spanned by Λ and fR is the p.d.f of R.
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Proof. From the theorem above, the density function of Y := RU (p) is

y 7−→ fY (y) =
Γ(p2)

2πp/2
· ‖y‖−(p−1)

2 · fR(‖y‖2).

To derive the density function of X, we introduce the transformation h : Rp\{0} → SΛ\{0}

with h(y) = Λy. We note that h(y) = x − µ and h is injective as Λ is invertible , so we

have

x 7−→ fX(x) = fY (h−1(x− µ)) · |Jh|−1.

Since h−1(x − µ) = Λ−1(x − µ) and ∂(µ + Λy)/∂yT = Λ implies that |Jh| = |det(Λ)|, we

hence conclude the p.d.f of X is: for x− µ ∈ SΛ \ {0}

x 7−→ fX(x) = fY (Λ−1(x− µ)) · |det(Λ)|−1

= |det(Λ)|−1 ·
Γ(p2)

2πp/2
· ‖Λ−1(x− µ)‖−(p−1)

2 · fR(‖Λ−1(x− µ)‖2).

(2.9)

Finally as

|det(Λ)| = |det(Σ)|1/2

(Λ−1)TΛ−1 = (ΛT )−1Λ−1 = (ΛΛT )−1 = Σ−1,

we can replace |det(Λ)|−1 with |det(Σ)|−1/2 and ‖Λ−1(x−µ)‖2 with
√

(x− µ)TΣ−1(x− µ)

respectively. The desired result is thus obtained.

From the theorem above, we see that when elliptically contoured distributions have a

positive definite Σ, their density functions can be expressed in terms of the density function

of the generating random variable R.

2.2.2 Moments

We can also use stochastic representations to find the mean and covariance of a p-

dimensional elliptical random vector X. Assume the X has the stochastic representation

X =d µ +RΛU (k) with R, U (k) defined as above and Λ ∈ Rp×k, µ ∈ Rk. Then the mean

of X is

E(X) = E(µ+RΛU (k)) = µ+ ΛE(R) · E(U (k)),

where the last equality used the fact that R is independent of U (k). Provided E(R) is

finite, applying the fact that E(U (k)) = 0, we obtain that E(X) = µ.
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When the covariance of X is considered, we compute

Cov(X) = E((RΛU (k))(RΛU (k))T ) = E(R2) · ΛE(U (k)U (k)T )ΛT . (2.10)

Here we require that E(R2) < ∞. To derive the explicit formula for Cov(X), we thus

need to obtain the explicit expressions for E(R2) and E(U (k)U (k)T ) respectively.

We start with the simpler calculation: E(U (k)U (k)T ). Since the distribution of U (k) is

known, E(U (k)U (k)T ) is a fixed number. Thus, by letting R be
√
χ2
k distributed, we can

derive its value by using familiar facts of normal and chi-square distributions. We recall

that from previous remarks, we have concluded that
√
χ2
kU

(k) ∼ Nk(0, Ik). It follows that

Ik = E((
√
χ2
kU

(k))(
√
χ2
kU

(k))T ) = E(χ2
k) · E(U (k)U (k)T ) = k · E(U (k)U (k)T ),

which implies E(U (k)U (k)T ) = Ik/k.

To obtain the value for E(R2), we need the following theorem proved by Cambanis et al.

(1981).

Theorem 2.13. Let X ∼ ECp(µ,Σ, φ). Further, assume X is nondegenerate and has

stochastic representation X =d µ + RΛU (k) where Σ = ΛΛT . Then E(R2) exists if and

only if the right hand-side derivative of φ(u) at u = 0, denoted as φ′(0), exists and is

finite. Moreover,

E(R2) = −2kφ′(0).

Proof. We observe that if we let U
(k)
1 be the first component of U (k), then it is direct to

see that E(R2) < ∞ if and only if E((RU
(k)
1 )2) < ∞ as E(R2) = k · E((RU

(k)
1 )2). Thus

to prove the existence part of the theorem, we only need to show that φ′(0) exists if and

only if E((RU
(k)
1 )2) <∞.

Since, from previous discussions, we know that RU (k) has the characteristic function t 7−→

φ(tT t), t ∈ Rk, it follows that RU
(k)
1 has the characteristic function

φ
RU

(k)
1

(u) = φ(u2), u ∈ R. (2.11)
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We first assume E((RU
(k)
1 )2) exists. It follows that φ

RU
(k)
1

is twice differentiable. Using

this result, we can derive the following key equality

E((RU
(k)
1 )2) = −φ′′

RU
(k)
1

(0) = − lim
h→0

φ(h2)− 2φ(0) + φ((−h)2)

h2

= −2 lim
h→0

φ(h2)− φ(0)

h2
= −2φ′(0) <∞.

As a result, the existence of E((RU
(k)
1 )2) guarantees the existence and finiteness of φ′(0)

and E((RU
(k)
1 )2) = −2φ′(0).

For the other direction, let φ′(0) exist and be finite. We want to show that

E((RU
(k)
1 )2) =

∫ ∞
−∞

x2dH(x) <∞, (2.12)

where H is the distribution function of RU
(k)
1 . To show this inequality, we first note that

x2 = 2 lim
h→0

1− coshx

h2
. (2.13)

In addition, due to the relationship (2.11), for h 6= 0, we have

1− φ(h2)

h2
=
−φ

RU
(k)
1

(h) + 2φ
RU

(k)
1

(0)− φ
RU

(k)
1

(−h)

2h2

=

∫ ∞
−∞

−(coshx+ i sinhx) + 2− (coshx− i sinhx)

2h2
dH(x)

=

∫ ∞
−∞

1− coshx

h2
dH(x).

(2.14)

Substituting the results of (2.13) and (2.14) into (2.12) and applying Fatou’s lemma, we

obtain

E((RU
(k)
1 )2) = 2

∫ ∞
−∞

lim
h→0

1− coshx

h2
dH(x)

≤ 2 lim
h→0

∫ ∞
−∞

1− coshx

h2
dH(x)

= 2 lim
h→0

1− φ(h2)

h2
= −2φ′(0) <∞.

(2.15)

As a result, the existence of φ′(0) implies the existence of E((RU
(k)
1 )2).
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With the discussions above, we have successfully evaluated both E(U (k)U (k)T ) and E(R2)

under the assumption that the covariance of X exists. As a result, the covariance of X is

Cov(X) = E(R2) · ΛE(U (k)U (k)T )ΛT

= −2kφ′(0) · Λ(Ik/k)ΛT = −2φ′(0)Σ.
(2.16)

At last, we note that we can always find a representation such that Cov(X) = Σ by

multiplying R with (−2φ′(0))−1/2.

2.2.3 Marginal distributions

To study the marginal distributions of elliptically contoured distributions, we adopt Hult

and Lindskog’s idea (Hult and Lindskog, 2002) and introduce matrices Pk ∈ {0, 1}k×p(k ≤

p), such that Pk only contains 0 or 1 entries and PkP
T

k = Ik. The Pk matrices are also

referred to as “permutation and deletion” by Frahm (2004), as Pk affects a p-dimensional

random vector X by permuting k components of X and deleting the remaining p − k

components of X. In terms of stochastic representations, we observe that: given X ∼

ECp(µ,Σ, φ) with X =d µ+RΛU (k) and Y := PkX,

Y =d Pk(µ+RΛU (k)) = Pkµ+RPkΛU (k). (2.17)

This implies that, Y , as an affine transformation of X, is also elliptically distributed with

Y ∼ ECp(Pkµ, PkΣP Tk , φ).

With this observation, a direct application of “permutation and deletion” matrices can

give us the marginal distribution of a random variable. For example, consider again the

p-dimensional random vector X ∼ ECp(µ,Σ, φ) and partition the arrays as

X =

X1

X2

 and µ =

µ1

µ2

 with dimensions

 k × 1

(p− k)× 1

 ,

Σ =

Σ11 Σ12

Σ21 Σ22

with dimensions

 k × k k × (p− k)

(p− k)× k (p− k)× (p− k)

 .

Then by setting

P1 =
(
Ik 0k×(p−k)

)
P2 =

(
0(p−k)×k Ip−k

)
,



Elliptically contoured distributions 19

we have P1X = X1 and P2X = X2. As a result, the distribution of X1 is ECp(µ1,Σ11, φ)

and the distribution of X2 is ECp(µ2,Σ22, φ).

Moreover, from the analyses above, another important observation to make is that for

elliptically contoured distributions, the characteristic function of the parent distribution

always has the same functional form as the characteristic function of the marginal distri-

bution. For example, if a marginal density of an elliptical random vector X is a normal

density, then X is normally distributed. In fact, to show that an elliptically distributed

random vector X ∼ ECp(µ,Σ, φ) is normally distributed, Kelker (1970) showed that it is

sufficient to check that the matrix Σ is diagonal and the components of X are independent.

Lemma 2.14. Let X ∼ ECp(µ,Σ, φ). If Σ is a diagonal matrix and the components of

X are independent, then X is normally distributed.

Proof. Without loss of generality, we assume µ = 0. Since Σ is diagonal and the compo-

nents of X are independent, we have

φ(σ11t
2
1 + σ22t

2
2 + · · ·+ σppt

2
p) =

p∏
i=1

φ(σiit
2
i ).

The above equation is also known as Hamel’s equation and has the solution φ(x) = ecx for

some constant c, c ≤ 0, as φ is a characteristic function. Since the characteristic function

of X takes the form φ(tTΣt) = exp(ctTΣt), X is normally distributed.

For more results on the independence and correlation of components of random vectors,

we refer interested readers to Johnson (1987).

2.2.4 Conditional distribution

Lastly and most importantly, we introduce some key results on conditional distributions,

which are essential to the development of some sufficient dimension reduction methods.

In order to study marginal distributions of elliptically contoured distributions, we adopt

the methodology developed by Cambanis et al. (1981): we start by analysing the marginal

distributions of a random vector uniformly distributed on a hypersphere and then use the

stochastic representations of random vectors to find the explicit form of the conditional

distributions.



Elliptically contoured distributions 20

Theorem 2.15 (Cambanis et al. (1981)). For any positive integer k, let U (k) be uniformly

distributed on the unit hypersphere Sk−1 := {x ∈ Rk : ‖x‖2 = 1}. Then, given U (k) and

any partition of U (k) with m := dim(U
(k)
1 ), we have (U (k))T = {(U (k)

1 )T , (U
(k)
2 )T } =d

{β(U (m))T , (1− β2)1/2(U (k−m))T }, where β, U (m), U (k−m) are independent and

β2 ∼ Beta(
m

2
,
k −m

2
).

Proof. To start, assume X = (XT
1 , X

T
2 )T ∼ Nk(0, Ik) with dim(X1) = m. Clearly, X1

and X2 are independent. We also observe that since the mapping x 7−→ (‖x‖2, x/‖x‖2) is

Borel measurable on Rk − {0}, we obtain that, given that X =d RU (k),

(‖X‖2, X/‖X‖2) =d (R,U (k)). (2.18)

Because X1 and X2 are independent and the equality (2.18), it follows that X1
‖X1‖2 , X2

‖X2‖2 ,

‖X1‖2, ‖X2‖2 are jointly independent and

X1

‖X1‖2
=d U

(m),
X2

‖X2‖2
=d U

(k−m), (2.19)

‖X1‖2 =d

√
χ2
m, ‖X2‖2 =d

√
χ2
k−m. (2.20)

Let

{(U (k)
1 )T , (U

(k)
2 )T }T = U (k) =d

X

‖X‖2
= (

XT
1

‖X‖2
,
XT

2

‖X‖2
)T . (2.21)

To derive the distribution of X1
‖X‖2 and X2

‖X‖2 , we define

β :=
‖X1‖2
‖X‖2

=
‖X1‖2

(‖X1‖22 + ‖X2‖22)1/2
. (2.22)

Given (2.19), (2.20) and the independence between ‖X1‖2, ‖X2‖2, β2 has the Beta(m2 ,
k−m

2 )

distribution. In addition, since β can be seen as a function of ‖x1‖2 and ‖x2‖2 and we

know that X1
‖X1‖2 ,

X2
‖X2‖2 , ‖X1‖2, ‖X2‖2 are jointly independent, β, X1

‖X1‖2 and X2
‖X2‖2 are

independent as well. As a result, we derive that

X1

‖X‖
=

X1

‖X1‖
· ‖X1‖
‖X‖

=d βU
(m), (2.23)

and consequently X2
‖X‖ =d (1− β2)1/2Uk−m.
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We now follow the proofs given by Frahm (2004) to obtain explicit stochastic representa-

tions of conditional distributions with the help of the above theorem.

Theorem 2.16. Let X ∼ ECp(µ,Σ, φ), where Σ ∈ Rp×p is positive definite with rank(Σ) =

r. We partition X as X = (XT
1 , X

T
2 )T with dim(X1) = k ≤ r and µ = (µT1 , µ

T
2 )T . Further

assume that

C =

C11 0

C21 C22

with dimensions

 k × k k × (r − k)

(p− k)× k (p− k)× (r − k)


is the generalized Cholesky root of Σ. Then a regular conditional distribution of X2 given

X1 = x1 is the elliptical distribution that has the stochastic representation:

(X2|X1 = x1) =d µ
∗ +R∗C22U

(r−k), (2.24)

where

• U (r−k) is uniformly distributed on Sr−k−1

• R∗ =d (R
√

1− β|R
√
βU (k) = C−1

11 (x1 − µ1)) with β ∼ Beta(k2 ,
r−k

2 )

• µ∗ = µ2 + C21C
−1
11 (x1 − µ1).

Proof. By Theorem 2.15, we have

U (r) =

U (r)
1

U
(r)
2

 =d

 √
β · U (k)

√
1− β · U (r−k)

 . (2.25)

Substituting this result into the stochastic representation of X, we get

X = (XT
1 , X

T
2 )T =d

 µ1 + C11R
√
βU (k)

µ2 + C21R
√
βU (k) + C22R

√
1− βU (r−k)

 . (2.26)

Since X1 = x1, we have x1 = µ1 + C11R
√
βU (k) and consequently R

√
βU (k) = C−1

11 (x1 −

µ1). As a result,

µ∗ = µ2 + C21R
√
βU (k) = µ2 + C21C

−1
11 (x1 − µ1)

and

R∗ =d (R
√

1− β|R
√
βU (k) = C−1

11 (x1 − µ1)).
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Remark 2.17. In fact, we do not need to calculate the Cholesky root of the matrix Σ to find

the conditional distributions as they can be expressed directly through the components of

Σ. We adopt the same notation used in the theorem above. Let

Σ =

Σ11 Σ12

Σ21 Σ22

 with dimensions

 k × k k × (p− k)

(p− k)× k (p− k)× (p− k)

 .

We observe that

C21C
−1
11 = (C21C

T
11)(CT−1

11 C−1
11 ) = Σ21Σ−1

11 (2.27)

and

C22C
T
22 = C21C

T
21 + C22C

T
22 − C21C

T
21

= (C21C
T
21 + C22C

T
22)− (C21C

T
11)(CT−1

11 C−1
11 )(C11C

T
21)

= Σ22 − Σ21Σ−1
11 Σ12.

(2.28)

Given these two equalities, we can replace components of the Cholesky root C with that

of Σ. Hence, (X2|X1 = x1) ∼ ECp−k(µ∗,Σ∗, φ∗) with

µ∗ = µ2 + Σ21Σ−1
11 (x1 − µ1)

Σ∗ = Σ22 − Σ21Σ−1
11 Σ12

(2.29)

while φ∗ corresponds to the characteristic generator of R∗U (r−k).

To facilitate future discussions, we also summarise the mean and covariance results of

(X2|X1 = x1) in the following corollary.

Corollary 2.18. Beginning as in Theorem 2.16, we have

E(X2|X1 = x1) = µ2 + Σ21Σ−1
11 (x1 − µ1),

and

Var(X2|X1 = x1) = w(x1)(Σ22 − Σ21Σ−1
11 Σ12),

where w(x2) is a function of x1 through the quadratic form (x1 − µ1)TΣ−1
11 (x1 − µ1).

Proof. Based on our previous discussions about moments of elliptically contoured distri-

butions, this corollary is a direct result of Theorem 2.16 and Remark 2.17.
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Remark 2.19. For the formula of Var(X2|X1 = x1), Kelker (1970) showed that w is con-

stant if and only if X = (XT
1 , X

T
2 )T is normally distributed.

The reason that we are interested in conditional distributions of elliptically distributed

random vectors is that their conditional distributions enjoy several nice properties. To

close this section, we introduce the most important result of this chapter, proved by

Eaton (1986), about the expected value of conditional distributions of elliptically contoured

distributions.

Theorem 2.20. Assume the random vector X in Rp has a mean vector. Suppose v 6= 0

is an arbitrary p-dimensional vector. Then, for any vector u that is orthogonal to v,

E(uTX|vTX) = 0, (2.30)

if and only if X is spherical.

Proof. Let ϕ(t) = E{exp(itTX)} be the characteristic function of X. We note that given

that the mean vector of X exists, the gradient of ϕ exists and

∇ϕ(t) = iE{X exp(itTX)}. (2.31)

To prove the statement, we first assume that (2.30) holds. Then because

EE{uTX exp(ivTX)|vX} = E{exp(ivTX)E(uTX|vTX)} = E[0] = 0 (2.32)

for all u such that uT v = 0 and (2.31),

uT∇ϕ(v) = 0. (2.33)

Now consider a smooth curve c : (0, 1) 7−→ {x| ‖x‖ = r} such that, for any Γ in the

orthogonal group Op, c(z1) = t and c(z2) = Γt for some z1, z2 ∈ (0, 1). As ‖c(z)‖2 = r2

for all z ∈ (0, 1), we have

(ċ(z))T c(z) = 0 ∀z ∈ (0, 1). (2.34)
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The vector of derivatives ċ is perpendicular to c at any z ∈ (0, 1). Combining the results

of (2.33) and (2.34), we derive that

d

dz
ϕ(c(z)) = (ċ(z))T∇ϕ(c(z)) = 0. (2.35)

Hence, the characteristic function ϕ is constant over the whole curve c and consequently,

ϕ(t) = ϕ(Γt), ∀Γ ∈ Op,

which indicates that X is spherically distributed.

For the other direction, we consider the random vector Y := (u, v)TX = (uTX, vTX)T .

Since X is spherically distributed with E(X) = 0, Y , as a linear transformation of X, has

an elliptical distribution Y ∼ EC(0,Σ, φ), where

Σ = (u, v)T (u, v) =

uTu 0

0 vT v

 .

Finally, a direct application of Corollary 2.18 gives the desired result.

We note that the theorem above can be generalised to matrices. Let Φ be an arbitrary

k × p matrix, with k ≤ p. Define PΦ to be the projection operator for the column space

of Φ and QΦ = Ip − PΦ. Then by the same line of reasoning, we can easily show that

E(QΦx|ΦTx) = 0 for all Φ if and only if the random vector X is spherically distributed.

Furthermore, because the expected value operator E is linear, it can also be derived that,

for all Φ,

E(x|ΦTx) = E(PΦx+QΦx|ΦTx) = E(PΦx|ΦTx) + E(QΦx|ΦTx) = PΦx, (2.36)

if and only if the random vector X is spherically distributed.

Finally, when elliptically contoured distributions are considered, we observe that since

elliptically contoured distributions are simply affine transformations of spherically dis-

tributed random vectors, the equality (2.36) implies that

E(x|ΦTx) is a linear function of ΦTx for all conforming matrices Φ if and only if X is

an elliptically contoured random vector.
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This is an important property of elliptically distributed random vectors. We will frequently

refer back to this property when we study sufficient dimension reduction methods in later

chapters.





Chapter 3

Central subspaces

We start investigating sufficient dimension reduction (SDR) methods from this chapter

onwards. In the introduction, we mentioned that we are interested in finding a minimum

dimension reduction subspace. However, as we will see shortly, such a minimum dimension

reduction subspace may not be unique. This will lead to complications and misleading

results when we apply SDR methods. To facilitate our discussions of SDR methods, it

is important that we deal with the issue of non-uniqueness first. One possible solution,

proposed by Cook (2009), is to introduce the concept of central dimension reduction

subspaces (or central subspaces). A central dimension reduction subspace is the unique

minimum dimension reduction subspace when it exists. Cook suggested that we should

restrict ourselves to the class of regressions for which the central subspace exists to ensure

the uniqueness of the minimum dimension reduction subspace. In this chapter, we focus

on studying central subspaces. To understand the need of central subspaces, we will

carefully study the abtract mathematical problem of sufficient dimension reduction and

dimension reduction subspaces. Then, we will closely examine the conditions that ensure

the existence of the central dimension reduction subspace. We need to determine whether

these conditions are weak enough for Cook’s idea to be relevant in practice.

3.1 Conditional Independence

To facilitate our studies of sufficient dimension reduction, we first present some useful

results on conditional independence, which will be needed in the following discussions.

27
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Proposition 3.1. Let U , V , W be random vectors. Then, U ⊥⊥ V |W if and only if

U ⊥⊥ (V,W )|W .

Proposition 3.2. Let U , V , W be random vectors and assume U∗ is a function of U .

Then, if U ⊥⊥ V |W ,

1. U∗ ⊥⊥ V |W ,

2. U ⊥⊥ V |(W,U∗).

Proposition 3.3 (conditional independence). Assume U , V , W and Z are random vec-

tors. Then the following two conditions are equivalent:

• U ⊥⊥W |(Z, V ) and U ⊥⊥ V |Z ,

• U ⊥⊥ (V,W )|Z.

For the purpose of this chapter, we omit the proofs for these propositions. Conditional

independence is an important but challenging area of statistics and its results often play

essential roles in helping us understand large data sets. For detailed proofs of the propo-

sitions above and background knowledge on conditional independence in general, we refer

interested readers to Basu and Pereira (1983), Dawid (1979a), Dawid (1979b).

3.2 Problem set up

We start by setting up a mathematical framework of sufficient dimension reduction. Sup-

pose y is a univariate response and x is a p-dimensional vector of explanatory variables.

We have briefly mentioned in the introduction that the key assumption of sufficient di-

mension reduction methods is that there exist p-dimensional vectors β1, . . . , βk such that

there is no loss of information when we regress the response variable y on βT1 x, . . . , β
T
k x

instead of x. In other words, the relationship between y and x can be described by the

following model:

y = f(βT1 x, β
T
2 x, . . . , β

T
k x, ε), (3.1)

where f is an arbitrary unknown function on Rk+1 and ε is independent of x. When k is

smaller than p, the dimension of the predictor x, we achieve dimension reduction.
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At first sight, it feels that we need to find Φ := (β1, . . . , βk) in order to reduce the dimension

of x. However, the problem is that Φ is not identifiable. To see it, let S(Φ) denotes a

subspace that is spanned by column vectors of Φ and let B = (b1, . . . , bq) be a basis matrix

of the subspace S(Φ). Because b1, . . . , bq are basis vectors, we can write each β1,. . . , βk as

a linear combinations of b1, . . . , bq. As the result, we can equally state (3.1) as

y = g(bT1 x, . . . , b
T
q x, ε) (3.2)

for some function g on Rq+1 and we derive a solution for B instead. In fact, the argument

holds for any matrix B such that S(B) = S(Φ). Since it is impossible to solve for a

particular matrix Φ, in sufficient dimension reduction, we are interested in identifying the

subspace S(Φ). The subspace S(Φ) is called a dimension reduction subspace (DRS).

Before we carefully study dimension reduction subspaces, we point out that models other

than (3.1) have been used in the literature of SDR methods. For instance, Cook (1994a,b,

1996) suggested that we can summarise the relationship between y and x using conditional

independence. That is,

y ⊥⊥ x|ΦTx, (3.3)

where Φ := (β1, . . . , βk) and ⊥⊥ means independent of. Since we have assumed that all

regression information is contained within ΦTx, y should be independent of x once we

are given ΦTx. Furthermore, we can represent the underlying assumption of sufficient

dimension reduction with conditional distribution functions:

Fy|x(a) = Fy|ΦT x(a) for all a ∈ R. (3.4)

The conditional distribution function of y given ΦTx is the same as the conditional distri-

bution function of y given x (Ma and Zhu, 2013; Zeng and Zhu, 2010).

Although models (3.1), (3.3) and (3.4) are different in formulations, they are in fact

equivalent to each other.

Lemma 3.4 (Zeng and Zhu (2010)). Assume the response variable y is one dimensional

and x ∈ Rp is a vector of explanatory variables. Then models (3.1), (3.3) and (3.4) are

equivalent.

Proof. Model (3.3) is equivalent to model (3.4) by the definition of conditional indepen-

dence (Basu and Pereira, 1983). Therefore, it is sufficient to show that model (3.1) and
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model (3.3) are equal.

First, we assume (3.1) holds. We observe that, given ΦTx, y depends on ε only. Since x is

independent of ε, x is independent of y given ΦTx. Thus, (3.3) holds. The other direction

is more involved and to prove it, an appropriate measure needs to be introduced. We omit

the proof of this direction and refer interested readers to (Zeng and Zhu, 2010).

In the following discussions, we will mainly use the formulation (3.3). There are two main

reasons for this choice. Firstly, we observe that, apart from vectors β1, . . . , βk, formulation

(3.1) requires an arbitrary link function f on Rk+1 and an independent error ε. In some

applications, conceiving a link function f or a meaningful independent random error can be

an obstacle. For instance, Cox and Snell (1968) showed that it is not possible to construct

an independent error based on just y and ΦTx when y is a binary variable, taking values

0 and 1 with probability depending on ΦTx. Formulation (3.3) avoids this drawback by

using conditional independence instead of introducing f and ε. Secondly, Basu and Pereira

(1983) proved several useful properties of conditional independence (some are covered in

section 3.1). Since these properties play an important role in the analysis of SDR methods,

adopting formulation (3.3) will greatly facilitate our discussions on SDR methods in later

chapters.

Remark 3.5. We point out that there is an underlying limitation of all sufficient dimension

reduction models. Since SDR approach assumes that the explanatory effect of x about

y is manifested through a few linear combinations of covariates, SDR models restrict

parsimonious characterizations of y|x to linear manifolds. Therefore, even for simple

nonlinear manifolds, we may need to take all of Rp to characterize them (Cook, 2009).

For instance, the only way to describe y ⊥⊥ x|‖x‖ with SDR models is to let Φ = Ip and

S(Φ) = Rp.

3.3 Dimension reduction subspaces

Given a univariate response variable y and x of p-dimensional covariates, we want to

identify dimension reduction subspaces (DRS) for y|x. Recall that a subspace S(Φ) is

called a dimension reduction subspace if

y ⊥⊥ x|ΦTx
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holds.

We first note that a DRS always exists. Because y ⊥⊥ x|x is always true, we can find a

DRS by letting Φ = Ip. For the same reason, a dimension reduction subspace need not

be unique. For example, if there exists a matrix B 6= Ip such that y ⊥⊥ x|BTx holds,

then both S(B) and S(Ip) are valid dimension reduction subspaces. Because our goal is

to maximally reduce the dimension of x, what we are really interested in is identifying a

DRS with minimum dimension among all possible DRSs. A subspace S is said to be a

minimum DRS for y|x if S is a DRS and dim(S) ≤ dim(Sdrs) for all DRSs Sdrs (Cook,

1994a,b, 2009). Hence, we have narrowed down the subspaces of interest to minimum

DRSs. A minimum dimension reduction subspace always exists by definition. To better

understand minimum DRSs, we look at the following property of minimum DRSs.

Proposition 3.6 (Cook (2009)). Let S(Φ) be a minimum dimension reduction subspace

for the regression of y on x and assume A ∈ Rp×p is an arbitrary full rank matrix. Then

if z = ATx, S(A−1Φ) is a minimum dimension reduction subspace for the regression of y

on z.

Proof. To prove that S(A−1Φ) is a minimum DRS for y|z, we first show that S(A−1Φ) is a

DRS for y|z. By the Proposition 3.2, we have y ⊥⊥ x|ΦTx if and only y ⊥⊥ ATx|ΦTx. Be-

cause A is full rank, it follows that y ⊥⊥ x|ΦTx if and only y ⊥⊥ z|(A−1ΦT )T z. Therefore,

S(A−1Φ) is a DRS for y|z by definition. Next, suppose there exists a DRS S(C) for y|z

such that dim{S(C)} ≤ dim{S(A−1Φ)}. Since y ⊥⊥ ATx|CTATx implies y ⊥⊥ x|(AC)Tx,

S(AC) is a DRS for y|x. Because A is full-rank and dim{S(C)} ≤ dim{S(A−1Φ)}, it fol-

lows that dim{S(AC)} ≤ dim{S(Φ)}, which contradicts the fact that S(Φ) is a minimum

DRS. Thus, S(A−1Φ) is a minimum dimension reduction subspace for the regression of y

on z.

This property gives a clear formula for a minimum DRS when the predictors are linearly

transformed with full-rank matrices. With the help of this property, we can derive a mini-

mum DRS for y|x by standardizing the predictors first. Then, we identify a minimum DRS

for the regression of y on the standardised predictors z. Finally, a linear transformation

of the minimum DRS for y|z gives us the desired result. Because it is often easier to deal

with standardized variables, we will use this strategy frequently in the following chapters

when we develop sufficient dimension reduction methods.
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3.4 Central subspaces

Although a minimum DRS exists for all regressions, minimum DRSs are not generally

unique. To see this, we consider the following example provided by Cook (2009).

Example 3.1. Let p = 2. Assume that x = (x1, x2)T distributed uniformly on the unit

circle ‖x‖ = 1. The true model is

y|x = x2
1 + ε,

where the random error ε is independent of x.

We observe that, since x2
1 + x2

2 = 1,

y|x = x2
1 + ε = (1− x2

2) + ε.

Thus, both S((1, 0)T ) and S((0, 1)T ) are dimension reduction subspaces. Because both of

them are one dimensional subspaces, S((1, 0)T ) and S((0, 1)T ) are minimum DRSs.

The non-uniqueness of minimum dimension reduction subspaces could lead to erroneous

conclusions at later stages when we attempt to recover such minimum dimension reduction

subspaces. For instance, in the paper of Chiaromonte and Cook (2002), it is mentioned that

when using sliced inverse regression (Li, 1991) to recover minimum dimension reduction

subspaces for the example above, we often take the minimum dimension reduction subspace

as the intersection of S((1, 0)T ) and S((0, 1)T ), which is {0}. As a result, x and y are

wrongly concluded to be independent.

To deal with the issues caused by non-uniqueness of minimum dimension reduction sub-

spaces, we adopt Cook’s idea (Cook, 1994a,b, 1996, 2009). Cook introduced a new type

of space called central dimension reduction subspaces. When a regression has a central

dimension reduction subspace, the regression can only have a unique minimum DRS. Cook

suggested that we can avoid the problem of non-unique minimum DRSs by restricting our

attention to regressions for which the central dimension reduction subspace exists. We

give the formal definition of central dimension reduction subspaces below.

Definition 3.7 (Central dimension reduction subspace). A subspace S is a central dimen-

sion reduction subspace (or central subspace for short) for the regression of y on x if S is

a dimension reduction subspace and S ⊆ Sdrs for all dimension reduction subspaces Sdrs.

We denote the central dimension-reduction subspace by Sy|x or Sy|x(Φ) when a matrix Φ

that spans the central subspace needs to be referred to explicitly.
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When a central subspace exists, it is the unique minimum DRS by definition. We can

formally prove this statement by contradiction. Assume S1 is a second minimum dimension

reduction subspace for an arbitrary regression with a central subspace Sy|x. Then, because

Sy|x ⊆ S1 and dim(Sy|x) = dim(S1), we much have Sy|x = S1. Therefore, the central

subspace is the unique minimum DRS when it exists.

Nevertheless, it should be noted that a central subspace does not necessarily exist even

when there is a unique minimum dimension reduction subspace. To see this, we consider

a similar example but with p = 3.

Example 3.2. Let x ∈ R3 be uniformly distributed on a unit sphere so that ‖x‖ = 1. We

assume that

y|x = x2
1 + ε.

For this example, the unique minimum direction reduction subspace S1 is spanned by the

vector (1, 0, 0)T . However, since

y|x = x2
1 + ε = 1− x2

2 − x2
3 + ε,

another possible dimension reduction subpsace S2 is spanned by vectors (0, 1, 0)T and

(0, 0, 1)T . The intersection of these two dimension reduction spaces is the origin.

In this case, the central subspace does not exist and the unique minimum dimension

reduction subspace is not a central subspace.

3.5 Existence of the central subspace

To follow Cook’s idea, it is important to identify conditions that ensure the existence of

the central subspace for regression problems. Apart from enabling us to decide whether

the results based on central subspaces are applicable to the regression problems of interest,

investigating these conditions also allow us to determine whether the class of regression

problems for which the central subspace exists is large enough for Cook’s idea to be of

practical use.

In order to study the existence conditions of the central spaces, we start by looking at a

similar example to the one above.
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Example 3.3. Let x ∈ R3 be uniformly distributed on a unit sphere so that ‖x‖ = 1. This

time, we modify the Example 3.2 slightly by letting

y|x = x2
1 + x1 + ε.

In this case, the central subspace exists and it is spanned by the vector (1, 0, 0)T . As the

sign of x1 cannot be determined by x2 and x3, all possible dimension reduction subspaces

must include the vector (1, 0, 0)T . Since the space spanned by (1, 0, 0)T is a dimension

reduction subspace, it is by definition a central subspace.

This and Example 3.2 in the previous section show that the existence of a central subspace

depends on the conditional distribution of y|x and on the marginal distribution of x.

To further explore the conditions that affect the existence of a central subspace, we assume

that a problem of interest has a minimum dimension reduction subspace Sm(Φ) and we

also let Sdrs(B) be an arbitrary dimension reduction subspace. Then, by the definition of

DRS, we have

y ⊥⊥ x|x, y ⊥⊥ x|ΦTx, y ⊥⊥ x|BTx.

Since BTx can be seen as a function of x and we know that y ⊥⊥ x|ΦTx, Proposition 3.2

shows that

y ⊥⊥ x|(ΦTx,BTx).

Due to the equivalence between formulations (3.3) and (3.4), we thus have

Fy|x(a) = Fy|ΦT x,BT x(a) = Fy|ΦT x(a) = Fy|BT x(a), ∀a ∈ R. (3.5)

The above equality is important because it helps us uncover essential relationships for

studying central subspaces. We observe that, given the equality(3.5), for all a ∈ R,

Fy|ΦT x(a) = Fy|BT x(a)

= EΦT x|BT x[Fy|ΦT x,BT x(a)] (by defn of conditional expectation)

= EΦT x|BT x[Fy|ΦT x(a)].

(3.6)

Thus, the fact that Sm(Φ) and Sdrs(B) are dimension reduction subspaces implies that

Fy|ΦT x(a) = EΦT x|BT x[Fy|ΦT x(a)]. In other words, Sm(Φ) and Sdrs(B) being dimension

reduction subspaces ensures that, with respect to the conditional distribution of ΦTx|BTx,
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Fy|ΦT x(a) is constant with probability 1. So, no further information is supplied to Fy|ΦT x(a)

by BTx given ΦTx.

The equality clearly holds when Sm(Φ) is a central subspace. That is Sm(Φ) ⊂ Sdrs(B).

However the equality (3.6) may hold under other conditions. If we can identify these con-

ditions, we may be able to force the existence of a central subspace by imposing restrictions

so that the equality (3.6) holds only when Sm(Φ) is a central subspace.

To explore different conditions for the equality (3.6), we start by assuming that Sm(Φ)

is not a central subspace. Without loss of generality, let S(C) := Sm(Φ) ∩ Sdrs(B) and

also let S(Φ1) = S(C)⊥S(Φ) and S(B1) = S(C)⊥S(B). Here, S(C)⊥S means the orthogonal

complement to S(C) in S. Since Sm(Φ) is not central, S(Φ1) and S(B1) are nontrivial

subspaces. Then, intuitively, the equality (3.6) implies that the information provided by

S(Φ1) to the response variable is the same as that provided by S(B1). To be more specific,

if the information about the response variable contained in S(Φ1) is contributed via a

function of fΦ(ΦT
1 x), then there exists a function fB(BT

1 x) such that fB(BT
1 x) = fΦ(ΦT

1 x).

fΦ(ΦT
1 x) can be replaced by fB(BT

1 x).

Example 3.4. To better understand this statement, we recall Example 3.2. Let x ∈ R3

be uniformly distributed on a unit sphere so that ‖x‖ = 1. We assume that

y|x = x2
1 + ε.

In this case, Sm(Φ) = S((1, 0, 0)T ), Sdrs(B) = S((0, 1, 0)T , (0, 0, 1)T ) and S(C) = {0}.

We also note that

fΦ(ΦT
1 x) = fΦ(ΦTx) = (ΦTx)2 = x2

1.

Moreover, since x follows a spherical distribution, we easily observe that by defining

fB(BT
1 x) as

fB(BT
1 x) = fB(BTx) := 1− x2

2 − x2
3,

we can replace fΦ(ΦT
1 x) with fB(BT

1 x). Here, we tie the regression function to the dis-

tribution of x and thereby achieve the equality (3.6) without forcing the centrality. The

possibility of replacement hence precludes the existence of a central subspace.

As a result, to ensure the existence of a central subspace, we have to eliminate the possi-

bility of such replacement. In other words, if there exist functions such that fΦ(ΦT
1 x) =
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fB(BT
1 x), both functions fΦ and fB should be trivial. In order to enforce this require-

ment, we follow Chiaromonte and Cook (2002)’s approach and introduce a lemma from

real analysis first.

Lemma 3.8. Let Ω ⊆ Rp be an open set, and g : Rp → R1 an analytic function. Also, let

PS be the orthogonal projection operator on S with respect to the standard inner product.

Assume S1 and S2 are any two subspaces of Rp. Then if

g(x) = g(PS1x) = g(PS2x), ∀x ∈ Ω, (3.7)

we have

g(x) = g(PS1∩S2x), ∀x ∈ Ω. (3.8)

Proof. Let T = S1 ∩ S2. In addition, let T1 = T⊥S1 and T2 = T⊥S2 . T1 is the orthogonal

complement of T of the subspace S1 and T2 is the orthogonal complement of T of the

subspace S2. Then for any x ∈ Ω, we can decompose PS1x and PS2x as follows:

PS1x = PTx+ PT1x,

PS2x = PTx+ PT2x.

Here, we note that PT1x and PT2x are linearly independent by the way they are defined.

Now, we recall the defining property for an analytic function g is that, for any a ∈ Rp,

one can write

g(z) = b0 +
∞∑

k1,...,kp=1

bk1,...,kp(z1 − a1)k1 . . . (zp − ap)kp (3.9)

where z is in the neighbourhood of a and b0, bk1,...,kp are constants. Let a = PTx. Then

by this property, we have

g(PS1x) = b0 +

∞∑
k1,...,kp=1

bk1,...,kp(u1)k1 . . . (up)
kp

and

g(PS2x) = b0 +
∞∑

k1,...,kp=1

bk1,...,kp(v1)k1 . . . (vp)
kp ,
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where (u1, . . . , up)
T = PT1x and (v1, . . . , vp)

T = PT2x. Since by assumption g(PS1x) =

g(PS2x), the two summations are equal as well:

b0 +
∞∑

k1,...,kp=1

bk1,...,kp(u1)k1 . . . (up)
kp = b0 +

∞∑
k1,...,kp=1

bk1,...,kp(v1)k1 . . . (vp)
kp . (3.10)

However, given that (u1, . . . , up)
T and (v1, . . . , vp)

T are linearly independent, the above

equality (3.10) holds if and only if b1,...,1, · · · = 0. It follows that

g(x) = g(PS1x) = g(PS2x) = b0 = g(PTx).

Since x is arbitrary, the lemma is proved.

This lemma says that given g(x) = g(PS1x) = g(PS2x), the fact that g is analytic ensures

the information for evaluating g(x) is completely captured by the projection of x into the

intersection of the subspaces S1 and S2. We thus can use this lemma to derive the following

proposition to secure the existence of the central subspace. We let LX and SuppX denote

the probability law and the closed support of X respectively.

Proposition 3.9 (Chiaromonte and Cook (2002)). Assume that SuppX contains an open

set Ω with LX(Ω) = 1. If we are given that Y ⊥⊥ X|E(Y |X), where Y admits finite first

order moments and E(Y |X) can be expressed as an analytic function of X, almost surely,

the central subspace exists.

Proof. Let Sm be a minimum dimension reduction subspace and Sdrs an arbitrary dimen-

sion reduction subspace. Then by definition, Y ⊥⊥ X|PSmX and Y ⊥⊥ X|PSdrs
X.

We note that we are given Y ⊥⊥ X|E(Y |X), so the regression problem of interest is

characterized by its regression function. When Y ⊥⊥ X|E(Y |X) holds, Cook (1996) showed

that, for any arbitrary DRS Sdrs, Y ⊥⊥ X|PSdrs
X if and only if Y ⊥⊥ X|E(Y |PSdrs

X) and,

additionally, E(Y |X) = E(Y |PSdrs
X). Therefore, we have

E(Y |X) = E(Y |PSmX) = E(Y |PSdrs
X).

Since E(Y |X) can be rewritten as an analytic function g of X, we can express the above

equality as g(X) = g(PSmX) = g(PSdrsX), almost surely. It follows that g(x) = g(PSmx) =

g(PSdrsx), ∀x ∈ Ω. Then a direct application of Lemma 3.8 gives us g(x) = g(PSm∩Sdrs
x)

for all x ∈ Ω, which in turn implies that Y ⊥⊥ X|E(Y |PSm∩Sdrs
X). Because Y ⊥⊥
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X|E(Y |PSm∩Sdrs
X) holds if and only if Y ⊥⊥ X|PSm∩Sdrs

X, Sm ∩ Sdrs is a dimension

reduction subspace.

Finally, given that Sm is a minimum DRS, we must have dim(Sm ∩ Sdrs) = dim(Sm). It

follows that Sm = Sm∩Sdrs ⊂ Sdrs. Since Sdrs is arbitrary, Sm is contained in all possible

dimension reduction subspaces and hence Sm is the central subspace.

The proposition is applicable to many standard regression models. For instance, it can be

used on additive-error models. If the true model is y = g(x) + ε with x ⊥⊥ ε, E(ε) = 0

and g(x) analytic, we have E(y|x) = g(x) and y ⊥⊥ x|g(x). In fact, we can also apply the

proposition to problems with heteroscedastic variance, as the conditions required by the

proposition are relatively loose. Consider the model: y = g(x) + σ(g(x))ε, where ε ⊥⊥ X,

E(ε) = 0 and g(x) is analytic. In this case, we still have E(y|x) = g(x) and y ⊥⊥ x|g(x).

However, to apply this proposition, we do require that y ⊥⊥ x|E(y|x) and the conditional

mean E(y|x) can be expressed as an analytic function of the predictor. For the idea of

central subspaces to be of more general use, we need to develop conditions that guarantee

the existence of the central subspace without constraining Y |X in any fashion. Fortunately,

this is achieved by the following proposition of Chiaromonte and Cook (2002); Cook (1994a,

1996).

Proposition 3.10. Assume that SuppX contains an open and convex set Ω with LX(Ω) =

1. Then the central subspace exists for the regression of any response Y on X.

Proof. Assume S(A) and S(B) are arbitrary dimension reduction subspaces. Also, let

S(C) = S(A)∩S(B), S(A1) = S(C)⊥S(A) and S(B1) = S(C)⊥S(B). We first want to show

that S(C) is a dimension reduction subspace as well.

Because S(A) and S(B) are DRSs, by the equality (3.5), we have

Fy|x(a) = Fy|AT
1 x,B

T
1 x,C

T x(a) = Fy|AT
1 x,C

T x(a) = Fy|BT
1 x,C

T x(a), ∀a ∈ R. (3.11)

Since x has a density with convex open support and (A1, B1, C) is a full-rank operator,

(AT1 x,B
T
1 x,C

Tx)T has a density with convex open support, denoted by Ωw. Let the

conditional values for AT1 x,B
T
1 x,C

Tx be w1, w2, w3 respectively. We observe that, by a

similar argument, the distribution of (AT1 x,B
T
1 x)|(CTx = w3) has a density with a convex

open support as well. We denote this support as Ω12|3(w3). To prove S(C) is a DRS, we
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need to show, for all a ∈ R, the equality

Fy|(AT
1 x=w1,BT

1 x=w2,CT x=w3)(a) = Fy|CT x=w3
(a), ∀(w1, w2, w3)T ∈ Ωw, (3.12)

holds. Because Ωw = ∪Ω3Ω12|3(w3), where Ω3 is the support of CTx, we can rewrite the

equality (3.12) as, for all a ∈ R and any arbitrary w3 ∈ Ω3,

Fy|(AT
1 x=w1,BT

1 x=w2,CT x=w3)(a) = Fy|CT x=w3
(a), ∀(w1, w2)T ∈ Ω12|3(w3) (3.13)

Consequently, we prove S(C) is a DRS by showing the above equality instead.

Fix any w3 ∈ Ω3 and let u = (w1, w2) and v = (w′1, w
′
2) be two arbitrary points in Ω12|3(w3).

Since Ω12|3(w3) is convex and open, there exists a linked sequence l1 = (l11, l
1
2), . . . , lN =

(lN1 , l
N
2 ) ∈ Ω12|3(w3) such that

1. l1 = (l11, l
1
2) = (w1, w2);

2. lN = (lN1 , l
N
2 ) = (w′1, w

′
2);

3. for all n = 2, . . . , N , either ln1 = ln−1
1 or ln2 = ln−1

2 .

We claim that for all n = 2, . . . , N , we have Fy|ln(a) = Fy|ln−1(a) for all a ∈ R. To see it,

we note that ln, ln−1 are linked by either ln1 = ln−1
1 or ln2 = ln−1

2 . When ln1 = ln−1
1 , by the

equality (3.11), we have, for all a ∈ R

Fy|(AT
1 x=ln1 ,B

T
1 x=ln2 ,C

T x=w3)(a) = Fy|(AT
1 x=ln1 ,C

T x=w3)(a) = Fy|(AT
1 x=ln−1

1 ,CT x=w3)(a)

= Fy|(AT
1 x=ln−1

1 ,BT
1 x=ln−1

2 ,CT x=w3)(a).
(3.14)

Similarly, when ln2 = ln−1
2 , the equality (3.11) implies that

Fy|(AT
1 x=ln1 ,B

T
1 x=ln2 ,C

T x=w3)(a) = Fy|(BT
1 x=ln2 ,C

T x=w3)(a) = Fy|(BT
1 x=ln−1

2 ,CT x=w3)(a)

= Fy|(AT
1 x=ln−1

1 ,BT
1 x=ln−1

2 ,CT x=w3)(a)
(3.15)

for all a ∈ R. Therefore, Fy|l1(a) = Fy|l2(a) = · · · = Fy|lN (a) for all a ∈ R. Since l1 = u

and lN = v, we obtain

Fy|(AT
1 x=w1,BT

1 x=w2,CT x=w3)(a) = Fy|(AT
1 x=w′1,B

T
1 x=w′2,C

T x=w3)(a) ∀a ∈ R.
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Finally, because u, v are arbitrary, for any a ∈ R, Fy|CT x=w3
(a) is constant over the set

Ω12|3(w3) and the equality (3.13) follows.

Up to now, we have shown that for any DRSs S(A) and S(B), S(C) = S(A)∩S(B) is also

a DRS. To prove the existence of the central subspace, let Sm(Φ) be a minimum DRS.

Since, for any DRS S(A), Sm(Φ)∩S(A) is a DRS and dim(Sm(Φ)) = dim(Sm(Φ)∩S(A)),

we have Sm(Φ) ⊂ S(A). Consequently, Sm(Φ) is the central subspace.

This proposition is important, because it eliminates the constraint on Y |X and purely

focuses on the distribution of X. Unlike Y |X, the object of study, the distribution of

X is at least partially known and sometimes controllable. We thus can check whether

the central subspace exists. In addition, we observe that the conditions required for the

distribution of X are quite weak. The proposition always holds when LX is absolutely

continuous and SuppX is convex, conditions which are satisfied by many problems of

interest. For example, the central subspace always exists for any predictor with positive

density over Rp. Even if the distribution of X does not satisfy these requirements, it is also

possible to modify the distribution of X to ensure the existence of the central subspace in

some cases.

So far, we have introduced possible conditions that force the existence of the central

subspace. We see that these conditions are fairly weak, so the class of regressions for

which the central subspace exists should be large enough to be relevant in practice. To

facilitate our following discussions, we assume regression problems of interest have the

central subspace thereafter.



Chapter 4

SIR and SAVE

In the following two chapters, we will study sufficient dimension reduction (SDR) methods

under the assumption that central subspaces exist. Simulations of SDR methods are

provided in Chapter 6.

In this chapter, we will carefully study the method Sliced Inverse Regression (SIR) and its

extension Sliced Average Variance Estimation (SAVE). SIR and SAVE are two important

and widely used methods. They tackle traditional challenges in a different yet efficient

way, as they extract information about the central subspace via inverse regression lines. In

the following discussions of these methods, we will focus on addressing two key questions.

Firstly, how can we apply these methods to recover at least a portion of the central

subspace? We aim to provide a step-by-step procedure for each method. Secondly, how

effective are these methods? In order to make the best use of SIR and SAVE methods, we

need to find their strengths and limitations respectively.

4.1 Sliced Inverse Regression

We first introduce the Sliced Inverse Regression methodology, which was proposed by

Li (1991). Sliced inverse regression(SIR), as its name suggests, is a method based on

the inverse regression x|y instead of the forward regression y|x. Since the covariate x

is generally of much higher dimensions than that of the response variable y, the inverse

regression is significantly easier to obtain than the forward regression. In our case, y is one

dimensional. The inverse regression is composed of p simple regressions xi|y, i = 1, . . . , p,

each of which can be easily computed and studied in a 2D plot. The key idea of SIR is to

41



SIR and SAVE 42

make use of the efficiency enjoyed by inverse regression to infer about central subspaces.

To be more specific, we want to establish a connection between inverse regression lines and

central subspaces, so we can take the advantage of inverse regression to efficiently derive

at least a portion of the central subspace. The word “Sliced” is included in the name of

the method because slicing techniques are used during the procedure.

4.1.1 Inverse Regression Subspace

In order to find the connection between inverse regression lines and the central subspace,

we start with a simple example provided by Cook (2009).

Example 4.1. Assume (y, xT ) follows a non-singular multivariate normal distribution,

where x ∈ Rp and y ∈ R. Also, assume that y ⊥⊥ x|E(y|x). Let Σyx = Cov(y, x),Σxy =

Cov(x, y), Σ = Var(x) and σ2 = Var(y). Applying Corollary 2.18 of Chapter 2, we derive

the following equations for regressing y on x and regressing x on y:

E(y|x) = E(y) + ΣyxΣ−1(x− E(x)), (4.1)

and

E(x|y) = E(x) + Σxyσ
−2(y − E(y)). (4.2)

From the first equation for E(y|x), we observe that given y ⊥⊥ x|E(y|x), we have y ⊥⊥

x|ΣyxΣ−1x or equivalently y ⊥⊥ x|ηTx, where η := (ΣyxΣ−1)T = Σ−1Σxy. It follows that,

the subspace S(η), spanned by the columns of the matrix η, is a DRS. Moreover, because η

is a p× 1 vector, the subspace S(η) is contained in any possible DRS and hence a central

subspace Sy|x(η).

When the inverse regression E(x|y) is considered, we note that if we define the inverse

regression subspace as

SE(x|y) = span{E(x|y)− E(x) | y ∈ R},

the equality (4.2) indicates that the inverse regression subspace is spanned by Σxy = Ση.

We omit σ−2 here, because it is a scalar and has no impact on a subspace.

Therefore, in this simple example, the inverse regression subspace SE(x|y) is a one dimen-

sional subspace spanned by the vector Ση. We can equally write SE(x|y) as S(Ση). Since

the central space Sy|x(η) is related to S(Ση) via a linear transformation Σ: ΣSy|x(η) =
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S(Ση), we can easily derive the central subspace via the formula Sy|x(η) = Σ−1S(Ση) =

Σ−1SE(x|y).

The above example gives us a brief idea of how inverse regression can be used to find

central subspaces. In addition, we have introduced an important type of subspace: inverse

regression subspace SE(x|y). An inverse regression subspace is spanned by the centered

inverse regression curve E(x|y)− E(x) as y varies.

In essence, estimating Sy|x with inverse regression is consisted of two steps. Firstly, we

need to establish a connection between the central subspace Sy|x and the inverse regression

subspace SE(x|y). Secondly, we approximate the SE(x|y) of the regression of interest. As the

name suggests, slicing techniques are used in estimating SE(x|y). Once we have an estimate

of SE(x|y), we can find Sy|x using the relationship between Sy|x and SE(x|y). We note that,

in the example above, we have assumed (y, xT ) follows a multivariate normal distribution.

In the following discussions, we will focus on applying SIR to general regression problems.

We will investigate each step in detail.

4.1.2 Finding a connection between Sy|x and SE(x|y)

We need to find a connection between the central subspace Sy|x and the inverse regression

subspace SE(x|y) of an arbitrary regression problem. To do so, we start by introducing

Proposition 4.1 below.

Proposition 4.1 (Cook (2009)). Let x be a p×1 random vector with E(x) = 0 and positive

definite covariance matrix Σ. Let Φ ∈ Rp×q, where q ≤ p, be an arbitrary full-rank matrix.

Assume that E(x|ΦTx = u) is linear function of u: E(x|ΦTx = u) = Mu for some fixed

matrix M ∈ Rp×q. Then

• M = ΣΦ(ΦTΣΦ)−1.

• MT is a generalized inverse of Φ.

• ΦMT is the orthogonal projection operator for S(Φ) relative to the inner product

(v1, v2)Σ = vT1 Σv2.

Proof. We prove each dot point in order.

Result One: M = ΣΦ(ΦTΣΦ)−1.
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Because x has a positive definite covariance matrix Σ, we first derive that

Cov(x,ΦTx) = Cov(x, x)Φ = ΣΦ

and

Cov(ΦTx,ΦTx) = ΦTCov(x, x)Φ = ΦTΣΦ

Recall that for any two random variables W,U with mean 0, we have Cov(W,U) =

E(WUT ) − 0 = E(E(WUT |U)) = E(E(W |U)UT ). By letting U = ΦTx and W = x

and the fact that E(x|ΦTx = u) = Mu, we obtain

ΣΦ = Cov(x,ΦTx) = E(E(W |U)UT )

= E(E(x|ΦTx)xTΦ) = ME(ΦTxxTΦ)

= MCov(ΦTx,ΦTx) = MΦTΣΦ.

(4.3)

It directly follows that M = ΣΦ(ΦTΣΦ)−1, as ΦTΣΦ is invertible.

Result two: MT is a generalized inverse of Φ.

To prove that MT is a generalized inverse of Φ, it is sufficient to show that ΦMTΦ = Φ.

Using result one and the fact that both Σ and ΦTΣΦ are symmetric, we easily derive that

ΦMTΦ = Φ(ΦTΣΦ)−TΦTΣTΦ = Φ(ΦTΣΦ)−1(ΦTΣΦ) = Φ.

Result three: ΦMT is the orthogonal projection operator for S(Φ) relative to the inner

product (v1, v2)Σ = vT1 Σv2.

Since Φ is at the front of the operator ΦM , ΦM is clearly an operator for the space S(Φ).

We have to show that ΦM is a projection operator and is orthogonal. Because, by result

two,

ΦMTΦMT = (ΦMTΦ)MT = ΦMT ,

ΦMT is a projection operator. In addition, we observe that

(ΦMTx, y)Σ = xTMΦTΣy = xTΣΦ(ΦTΣΦ)−1ΦTΣy,

(x,ΦMT y)Σ = xTΣΦMT y = xTΣΦ(ΦTΣΦ)−1ΦTΣy.

The above two equalities imply (ΦMTx, y)Σ = (x,ΦMT y)Σ, so ΦMT is orthogonal. Result

three is proved.
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This proposition reveals how the conditional expectation E(x|ΦTx = u) is related to the

orthogonal projection operator of the space spanned by columns of Φ, when the conditional

expectation E(x|ΦTx = u) is linear in u. Therefore, if a regression problem has the central

subspace S(Φ) and satisfies that E(x|ΦTx = u) is linear in u, we can use the results of

Proposition 4.1 to establish a connection between Sy|x and SE(x|y). Based on this idea,

Cook (2009), Li (1991) introduced the following proposition.

Remark 4.2. We point out that, by using this idea, we have loosened the condition that x

is normally distributed to that E(x|ΦTx = u) is linear in u. From Chapter 2, we know that

this condition is satisfied when x follows an elliptically contoured distribution, but being

elliptically distributed is not a necessary condition for linear conditional expectations. In

addition, Carroll and Li (1992) showed that the assumption that E(x|ΦTx = u) is linear in

u is realistic for many high-dimensional data sets. It can be proved that, if Φ is a random

matrix with a vague distribution, the probability that this assumption holds approaches

to 1 when the dimensionality of x tends to infinity.

Proposition 4.3. Let Φ be a basis for Sy|x, and let Σ = Var(x). Assume that E(x|ΦTx =

u) is a linear function of u. Then

E(x|y)− E(x) = P TΦ(Σ)(E(x|y)− E(x))

and

SE(x|y) ⊆ S(ΣΦ) = ΣSy|x

where PΦ(Σ) is the projection operator for Sy|x relative to the inner product induced by Σ.

Proof. Since Φ is a basis for Sy|x, we have y ⊥⊥ x|ΦTx. We first relate E(x|y) and E(x|ΦTx).

Because y ⊥⊥ x|ΦTx, we have

E(x|y) = EΦT x|y{E(x|ΦTx, y)},

= EΦT x|y{E(x|ΦTx)}.
(4.4)

It follows

E(x|y)− E(x) = EΦT x|y{E(x|ΦTx)− E(x)}. (4.5)

Then, since E(x|ΦTx)− E(x) is linear in ΦTx, by the result three of the Proposition 4.1,

we obtain

E(x|ΦTx)− E(x) = P TΦ(Σ)(x− E(x)).
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Substituting this result back into the equation (4.5), we have

E(x|y)− E(x) = EΦT x|y(E(x|ΦTx)− E(x))

= EΦT x|y(P
T
Φ(Σ)(x− E(x)))

= P TΦ(Σ)(E(x|y)− E(x)),

(4.6)

and conclusions follow.

By a similar argument of Proposition 3.6, we can also adapt above results to standardized

covariates.

Corollary 4.4. Under the same assumptions of Proposition 4.3, we have

SE(z|y) ⊆ S(Σ1/2Φ) = Σ−1/2Sy|x = Sy|z, (4.7)

where z = Σ−1/2(x− E(x)).

We see that when the covariate vector is standardised to z, the relationship between SE(y|z)

and Sy|z is more straightforward than that between SE(y|x) and Sy|x. SE(y|z) is a subset of

Sy|z while SE(y|x) is a subset of a linear transformation of Sy|x, ΣSy|x. Since there is no loss

of generality given that Σ−1/2Sy|z = Sy|x, we can work in the scale of z = Σ−1/2(x−E(x))

to facilitate the discussion.

Remark 4.5. We have shown that SE(x|y) ⊆ ΣSy|x, when E(x|ΦTx = u) is linear in u. In

most situations, SE(x|y) is a strict proper subset of ΣSy|x, but there are situations in which

this may not be so. In some situations, it is possible for SE(x|y) to contain no information

about ΣSy|x by being trivial, or to contain all the information of ΣSy|x by satisfying the

equality SE(x|y) = ΣSy|x. The same statement holds true when SE(x|y) and ΣSy|x are

replaced by SE(z|y) and Sy|z respectively, where z = Σ−1/2(x− E(x)). To better illustrate

this point, we give examples for each case and work in the scale of z.

Case 1: SE(z|y) is trivial

Assume z follows a standard normal distribution. Suppose the true model is

y|z = (γT z)2 + ε,

where γ is a p × 1 vector and ε is an independent normal error. In this case, the central

subspace Sy|z is one dimensional and spanned by the vector γ.
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γT z

y

0

Figure 4.1: Stylised graph for y|z = (γT z)2 + ε

We also provide a stylised plot for the model. We observe from Figure 4.1 that the model

has a upward parabola shape and is symmetric about z = 0 axis. Thus, for all values of

y, we have E(γT z|y) = 0. Moreover, since z follows a standard normal distribution, we

could further deduce E(z|y) = 0 for all values of y. Hence, the inverse regression subspace

SE(z|y) = span{E(z|y) − E(z) = 0 − 0 = 0 | y ∈ R+} is a trivial subspace and SE(z|y)

contains no information about the central subspace. In fact, this reasoning holds for any

symmetric dependence. When symmetry structure is present, the portion of E(z|y)−E(z)

contributed by the symmetry part is always 0. Since SE(z|y) is a subspace of the first

moment of the inverse regression only, SE(z|y) reveals no information about the symmetry

structure. It should be noted that even when symmetry dependence exists, SE(z|y) is still

capable of revealing other non-symmetric structures of the regression of interest and, in

this case, SE(z|y) is not necessarily trivial.

Case 2: SE(z|y) = Sy|z

We make the same assumption as above except the true model now is

y|z = c0 + c1(γT z) + (γT z)2 + σε

with c0, c1 ∈ R. In this case, although a symmetry structure (γT z)2 exists, SE(z|y) is

capable of recovering the linear part γT z and SE(z|y) = S(γ) (Cook, 2009). We observe

that given the true model, the central subspace is Sy|z = S(γ). Thus, SE(z|y) = Sy|z.

So far, we have successfully connected the inverse regression subspace SE(x|y) and Sy|x(Φ);

when E(x|ΦTx) is linear, SE(x|y) is a subset of the transformed central subspace ΣSy|x.

Thus, by studying SE(x|y), we could obtain at least a partial estimate of Sy|x, which
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is Σ−1SE(x|y). Alternatively, we can work with standardized covariate vector z. Since

SE(z|y) ⊆ Sy|z, we first estimate Sy|z by approximating SE(z|y). Then we derive an estimate

of Sy|x using the linear transformation Sy|x = Σ−1/2Sy|z.

Because it is more direct to work with standardised covariate vector z, we follow the second

procedure and try to find an approximation to SE(z|y) in the next section.

4.1.3 Estimating SE(z|y)

We want to find an efficient way to approximate the inverse regression subspace SE(z|y).

To start, we introduce a useful result, which is modified from Proposition 2.7 of (Eaton,

1983).

Proposition 4.6. Suppose x is a random vector in an inner product space V with Cov(x) =

Σ and E(x) = µ. Let S(Σ) be the range space of Σ. Then,

P{x− µ ∈ S(Σ)} = 1.

Proof. To simplify the notation, denote y = x− µ. Since y is just a horizontal shift of x,

Cov(y) = Cov(x) = Σ. Thus, it is equivalent to show that P{y ∈ S(Σ)} = 1. If Σ is a

full-rank matrix, then y has to be within the space S(Σ) as S(Σ) = V . The interesting

case is when Σ is singular.

Assume the null space of Σ isN (Σ) with dimension k > 0 and orthogonal basis {u1, . . . , uk}.

Since N (Σ) ⊕ S(Σ) = V , a vector v /∈ S(Σ) if and only if (v, ui) 6= 0 for some index

i = 1, . . . , k. Thus,

P{y /∈ S(Σ)} = P{(y, ui) 6= 0 for some i = 1, . . . , k}

≤
k∑
1

P{(y, ui) 6= 0}.
(4.8)

Because E(y) = 0, (y, ui) has mean 0. Because ui ∈ N (Σ), Var{(y, ui)} = (ui,Σui) = 0.

As a result, P{(y, ui) = 0} = 1 for i = 1, . . . , k. It follows that

0 ≤ P{y /∈ S(Σ)} ≤
k∑
1

P{(y, ui) 6= 0} = 0 (4.9)

and consequently P{y ∈ S{Σ}} = 1.
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We apply Proposition 4.6 to the random vector E(z|y). Since E(E(z|y)) = 0, we have

P{E(z|y) ∈ S(Var[E(z|y)])} = 1, which implies SE(z|y) ⊂ S{Var[E(z|y)]}. In fact, it

can also be shown that S{Var[E(z|y)]} ⊂ SE(z|y). Assume the dimension of SE(z|y)

is d and let S⊥E(z|y) be an orthogonal complement of the subspace SE(z|y) with an or-

thonormal basis {v1, . . . , vp−d}. It follows that E(z|y)T vi = 0 for i = 1, . . . , k. Be-

cause Var[E(z|y)] = E[E(z|y)E(z|y)T ], we have Var[E(z|y)]vi = E[E(z|y)(E(z|y)T vi)] = 0.

Therefore S{Var[E(z|y)]} is contained in SE(z|y) as well. Combining these results, we

derive that

SE(z|y) = S{Var[E(z|y)]}. (4.10)

The inverse regression subspace SE(z|y) is equivalent to the range space of Var[E(z|y)]. We

can thus construct an estimate of SE(z|y) by finding an approximation to the subspace

S{Var[E(z|y)]}.

To approximate S{Var[E(z|y)]}, Li (1991) suggested replacing the response variable y

with a discrete version ỹ. We first partition the range of y into h (pre-determined) fixed,

nonoverlapping slices Js, s = 1, . . . , h. Then within each slice, we represent the range of

y of that slice by a fixed number ỹs within the range of the slice. The vector ỹ consists of

these fixed values ỹs. Finally, we derive an estimate of S{Var[E(z|y)]} by calculating the

eigenvectors corresponding to the nonzero eigenvalues of Var[E(z|ỹ)], which estimate the

basis for S{Var[E(z|y)]}.

Remark 4.7. For the replacement of y by ỹ to be valid, we require Sỹ|z ⊂ Sy|z. This can

be simply proved by a direct application of Proposition 3.2 of conditional independence.

Let Φ be a basis of Sy|x. Then Σ1/2Φ is a basis for Sy|z and y ⊥⊥ z|(Σ1/2Φ)T z. Since ỹ can

be seen as a function of y, y ⊥⊥ z|(Σ1/2Φ)T z implies that ỹ ⊥⊥ z|(Σ1/2Φ)T z. Sỹ|z ⊂ Sy|z

clearly holds. Therefore, under the assumption that E(x|ΦTx = u) is a linear function of

u,

S{Var[E(z|ỹ)]} = SE(z|ỹ) ⊂ Sỹ|z ⊂ Sy|z.

4.1.4 SIR Algorithm

So far, we have outlined the idea behind the sliced inverse regression and have carefully

discussed all theoretical foundations required for this method to work. Since there is no

loss of generality, we have worked in the scale of

z = Σ−1/2(x− E(x))
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to facilitate the discussion.

Overall, we want to take advantage of the low dimension of the response variable y by

trying to establish a relationship between the inverse regression subspace SE(z|y) and the

central subspace Sy|z. Fortunately, given Sy|x = S(Φ), if E(x|ΦTx) is linear, the relation-

ship SE(z|y) ⊆ Sy|z can be established. We then slice the range of y and use Var[E(z|ỹ)] to

obtain an estimation of SE(z|y) to uncover information of the central subspace Sy|z. As the

name sliced inverse regression suggests, this method provides information about Sy|x via

two key factors: the inverse regression space and an estimation obtained via the slicing

technique. We summarise and list the step-by-step algorithm for SIR below.

SIR Algorithm

Assume we have a sample {(yi, xi), i = 1, . . . , n} and we divide the range of y into h slices

so that each slice Js contains ns number of observations, s = 1, . . . , h.

1. Standardize sample covariates. Denote the sample variance as Σ̂ and the sample

mean as x̄. Compute the standardized covariate as

ẑi = Σ̂−1/2(xi − x̄).

2. Slice the range of y in to h slices and replace each y with ỹs for y ∈ Js. Estimate

E(z|ỹs), s = 1, . . . , h by

z̄s =

∑
yi∈Js ẑi

ns
.

3. Estimate the population matrix Var[E(z|ỹ)] =
∑h

s=1 Pr(y ∈ Js)E(z|y ∈ Js)E(z|y ∈

Js)
T by the weighted sample covariance matrix

V̂ =
1

n

h∑
s=1

nsz̄sz̄
T
s .

4. Perform the eigenvalue decomposition on V̂ . Denote the eigenvalues as λ̂1, . . . , λ̂p,

where λ̂1 ≥ · · · ≥ λ̂p and their associated eigenvectors l̂1, . . . , l̂p.

5. Let the dimension of S{Var[E(z|ỹ)]} be d. Find the SIR estimate of SE(z|ỹ) with

ŜE(z|ỹ) = S(l̂1, . . . , l̂d).
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6. Linear transform ŜE(z|ỹ) by Σ̂1/2. The SIR estimate of the central subspace Sy|x is

Σ̂−1/2ŜE(z|ỹ) = S(Σ̂−1/2 l̂1, . . . , Σ̂
−1/2 l̂d).

We point out that the sample variance V̂ converges to the population covariance matrix

Var[E(z|ỹ)] at the rate of
√
n. Here we recall that we have used the sample covariance

of x, Σ̂ to standardise x. In asymptotic analyses of SIR, this case is referred to as the

ignorant case. When the population covariance Σ is known, it is called the non-ignorant

case. For both cases, the asymptotic behaviour of V̂ can be derived by applying the

Central Limit Theorem and the Delta method and the same convergence result will be

obtained. Detailed proofs for both ignorant case and non-ignorant case can be found in

Saracco (1997).

There have been many other approaches available for studying the asymptotic distribution

of V̂ and different results can be derived for specific settings. For example, by assuming

rank(V ) = 1, Duan and Li (1991) used Taylor expansion of a related eigen-problem,

whose solution is the largest eigenvector of V̂ , to study the asymptotic distribution of V̂ .

Carroll and Li (1992) studied the asymptotic behaviour of the eigenvectors of V̂ when the

sample covariate x cannot be directly computed and surrogates of the covariate have to

be introduced. Finally, Hsing and Carroll (1992) discussed the asymptotic properties of

V̂ when each slice Js has two observations only; these results were later extended by Zhu

and Ng (1995) for any fixed number of observations in each slice Js.

Finally, it is important to note that the convergence results of V̂ imply that the eigenvalues

and eigenvectors of V̂ converge at the rate of
√
n to the eigenvalues and engenvectors of

Var[E(x|ỹ)] as well (Saracco, 1997).

4.1.5 A method for choosing the dimension S{Var[E(z|ỹ)]}

We recall that, in the SIR algorithm, we have assumed the dimension d = dim[S{Var[E(z|ỹ)]}]

of the inverse regression space is known. Theoretically, if the covariance matrix V ar[E(x|ỹ)]

is known, d is simply the number of its non-zero eigenvalues and the sum of the smallest

p− d eigenvalues is zero. However, in practice, we need to determine the value of d.
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A widely used method is proposed by Bura and Cook (2001). Bura and Cook suggested

that we should choose d by studying the asymptotic behaviour of the statistic:

∆̂m = n

p∑
j=m+1

λ̂j , (4.11)

where λ̂j are eigenvalues of V̂ . Once we know the asymptotic distribution of the statistic

∆̂, we can determine d by a series of hypotheses tests. Let m be an integer. We start by

assuming m = 0 and then compute the statistic ∆̂m to test the hypotheses H0: d = m

against H1: d > m, using its asymptotic distribution. If the test concludes d > m, we

increase m by 1 and repeat the test until either we accept H0: d = m or H1: d > m when

m = p− 1 (In this case, we conclude d = p, as the possible maximum value of d is p).

Remark 4.8. Bura and Cook (2001)’s method was developed on Li (1991)’s original di-

mension test. Bura and Cook used the same test statistic as Li. However, because Li’s

dimension test requires normally distributed covariates, Busa and Cook extended Li’s test

for general situations. There are other methods for choosing the value of d. For example,

by investigating the eigenvectors of V̂ , Schott (1994) proposed a test for choosing d under

the assumption that the covariates are elliptically distributed. Under the same assump-

tion, we can also choose d using permutation procures developed by Cook and Yin (2001),

which can be computationally expensive.

We now investigate the asymptotic distribution of ∆̂d. Since ∆̂d is the sum of the smallest

min(p− d, h− d) eigenvalues of the covariance matrix V̂ , one possible approach to study

∆̂d is through the singular values of the Cholesky decomposition of V̂ , as the square of

these singular values are the positive eigenvalues of V̂ . Denote the matrices

Ẑ = (

√
n1

n
z̄1, . . . ,

√
nh
n
z̄h)

and

Z = (
√

Pr(y ∈ J1)E(z|y ∈ J1), . . . ,
√

Pr(y ∈ Jh)E(z|y ∈ Js)).

We have V̂ = ẐẐT . We first need to characterize the asymptotic distribution of the

singular values of Ẑ. To do so, we borrow the general asymptotic result for singular values
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from Eaton and Tyler (1994). Assume the singular value decomposition of Z gives

Z = UT

D 0

0 0

V

=
(
UI U0

)D 0

0 0

(VI V0

)T (4.12)

where U ∈ Rp×p, V ∈ Rh×h are orthonormal matrices with U0 ∈ Rp×(p−d), V0 ∈ Rh×(h−d)

and D ∈ Rd×d is a diagonal matrix of singular values. Eaton and Tyler (1994) showed that

the asymptotic distribution of the smallest min(p− d, h− d) singular values of
√
n(Ẑ−Z)

is the same as the asymptotic distribution of the singular values of the (p − d) × (h − d)

matrix
√
nUT0 (Ẑ − Z)V0 =

√
nUT0 ẐV0. (4.13)

This means the asymptotic distribution of the smallest min(p−d, h−d) singular values of
√
nẐ is the same as the asymptotic distribution of

√
nUT0 ẐV0. As a result, we can focus

on studying the asymptotic behaviour of
√
nvec(UT0 ẐV0) and then derive the asymptotic

distribution of the statistic ∆̂d, which is equal to the asymptotic distribution of

∆d = ntr[UT0 ẐV0(UT0 ẐV0)T ] = nvec(UT0 ẐV0)Tvec(UT0 ẐV0).

Remark 4.9. The above analysis was based on the assumption that h is large enough so

that d < min(p, h − 1) (Cook, 2009). Because E(E(z|ỹ)) = 0, we note that there is at

least one linear dependency among columns of Z. Therefore, Z has possible maximum

rank min(p, h − 1). Consequently, the possible maximum rank of Var[E(z|ỹ)] = ZZT is

min(p, h−1). Since we are testing hypotheses about d, the number of non-zero eigenvalues

of Var[E(z|ỹ)], we require d < min(p, h−1) for our approach to be feasible. The constraint

d < min(p, h− 1) is always satisfied if we choose h > p+ 1.

Proposition 4.10 (Cook (2009)). Let U0, Ẑ, V0 be defined as above. Then

√
nvec(UT0 ẐV0) −→d N(0,ΣZ). (4.14)

Here,

ΣZ = (V T
0 Q⊗ Ip−d)Υ0(QV0 ⊗ Ip−d), (4.15)



SIR and SAVE 54

where Q is the orthogonal projection for S⊥((
√

Pr(y ∈ J1), . . . ,
√

Pr(y ∈ Jh))T ) and Υ0 is

a (p−d)h×(p−d)h block diagonal matrix with diagonal blocks UT0 Var(z|ỹs)U0, s = 1, . . . , h.

Proof. To start, let us define

Mn := (x̄1, . . . , x̄h) ∈ Rp×h

C := (E(x|y ∈ J1), . . . ,E(x|y ∈ Jh)) ∈ Rp×h

The proof can be broken into three steps. During the first step, we follow Cook’s idea

and find an approximation to
√
nUT0 ẐV0. The approximation should be a function of the

matrix Mn−C and should allow us to transform the problem from studying the asymptotic

distribution of
√
nUT0 ẐV0 to studying the asymptotic behaviour of its approximation. The

reason that we want the approximation to be a function of Mn − C is that we can apply

the Central Limit theorem to find the asymptotic distribution of Mn − C. Finally, we

apply the Delta method to derive the desired distribution.

Step One: Approximation to
√
nUT0 ẐV0

In order to find a function of the matrix Mn − C that approximates
√
nvec(UT0 ẐV0), we

try to find an equivalent expression for
√
nvec(UT0 ẐV0) that incorporates Mn − C.

Let

1h := (1, . . . , 1)T ∈ Rh×1,

ρ̂ := (
n1

n
, . . . ,

nh
n

)T ∈ Rh×1,

and

ρ := (Pr(y ∈ J1), . . . ,Pr(y ∈ Jh))T ∈ Rh×1.

Also, assume that x̄, x̄s and Σ̂ are the sample estimates of µ = E(x), µx|s = E(x|y ∈ Js)

and Σ = Var(x) respectively.

We observe that

(x̄1 − x̄, . . . , x̄h − x̄) = Mn(Ih − ρ̂1Th )

and

(µx|1 − µ, . . . , µx|h − µ) = C(Ih − ρ1Th ).

It follows that

Ẑ = Σ̂−1/2Mn(Ih − ρ̂1Th )Ĝ
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and

Z = Σ−1/2C(Ih − ρ̂1Th )G,

where G ∈ Rh×h is a diagonal matrix with diagonal elements
√

Pr(y ∈ Js) and Ĝ ∈ Rh×h

is also a diagonal matrix with diagonal entries
√
ns/n. Also, we note that

G−1(Ih − ρ1Th )G = Ih −
√
ρ
√
ρT = Q,

which implies GQ = (Ih−ρ1Th )G. Here,
√
ρ := (

√
Pr(y ∈ J1), . . . ,

√
Pr(y ∈ Jh))T ∈ Rh×1.

Denote Â = Σ̂−1/2Σ1/2, F = GQ and F̂ = ĜQ√ρ̂. Q
√
ρ̂ is the orthogonal projection for

S⊥(
√
ρ̂). It follows that

F̂ = ĜQ√ρ̂ = (Ih − ρ̂1Th )Ĝ. (4.16)

In addition, we can express
√
nUT0 ẐV0 as

√
nUT0 ẐV0 =

√
nUT0 (Â− Ip + Ip)Σ

−1/2(Mn − C + C)(F̂ − F + F )V0. (4.17)

We now expand the equation in terms (Â − Ip), (Mn − C), and (F̂ − F ) with the error

term op(n
−1/2), which gives:

√
nUT0 ẐV0 =

√
nUT0 (Â− Ip)CFV0

+
√
nUT0 Σ−1/2(Mn − C)FV0

+
√
nUT0 Σ−1/2C(F̂ − F )V0

+
√
nUT0 Σ−1/2CFV0 + op(n

−1/2).

(4.18)

Since Z = Σ−1/2CF and ZV0 = 0p×(h−d), the first and the fourth terms are zero. For the

third term, we notice that

√
nUT0 Σ−1/2C(F̂ − F )V0 =

√
nUT0 Σ−1/2CF̂V0 −

√
nUT0 Σ−1/2CFV0

=
√
nUT0 Σ−1/2CF̂V0

=
√
n(CTΣ−1/2U0)T (Ih − ρ̂1Th )ĜV0.

(4.19)

The last equality uses the equation (4.16). Because G is invertible, Z = Σ−1/2C(Ih−ρ1Th )G

and UT0 Z = 0(p−d)×h, we have (CTΣ−1/2U0)T (Ih − ρ1Th ) = 0(p−d)×h. Also, we know that

if vT (Ih − ρ1Th ) = 01×h, where v ∈ Rh×1, v has to be in the space S(1h). It follows that

CTΣ−1/2U0 ∈ S(1h).
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Now, direct algebra shows that 1Th (Ih×h− ρ̂1Th ) = 01×h. Using the fact that CTΣ−1/2U0 ∈

S(1h), we conclude (CTΣ−1/2U0)T (Ih×h − ρ̂1Th ) = 0. As a result, the equation (4.19) is

zero.

Combining above results, we have derived that

√
nUT0 ẐV0 =

√
nUT0 Σ−1/2(Mn − C)FV0 + op(n

−1/2)

=
√
nUT0 Σ−1/2(Mn − C)GQV0 + op(n

−1/2).
(4.20)

Step 2: the Central Limit theorem

Direct application of the Central limit theorem to
√
nvec(Mn − C) gives that

√
nvec(Mn − C) −→d N(0, (G−1 ⊗ Ip)Υx(G−1 ⊗ Ip)), (4.21)

where Υx is a block diagonal matrix with diagonal blocks Var(x|ỹs), s = 1, . . . , h.

Step 3: the Delta method

Finally, we introduce the function:

f1 :Rph×1 7→ R(p−d)(h−d)×1

vec(X) 7→ vec(UT0 Σ−1/2XGQV0).

Applying the Delta method gives us the desire result:

√
nvec(UT0 ẐV0) −→d N(0, (V T

0 Q⊗ Ip−d)Υ0(QV0 ⊗ Ip−d)),

with Υ0 being a (p−d)h×(p−d)h block diagonal matrix with diagonal blocks UT0 Var(z|ỹs)U0,

s = 1, . . . , h.

Given the above proposition, we know that
√
nvec(UT0 ẐV0) converges to a normal distri-

bution asymptotically. Since ∆̂d is the square of
√
nvec(UT0 ẐV0), we conclude that ∆̂d is

distributed as a linear combination of independent chi-square random variables. Formally,

we summarise the result in Proposition 4.11 below.

Proposition 4.11 (Cook (2009)). Let d = dim(SE(z|y)), where d < h−1 and d < p. Also,

define the statistic ∆̂d and ∆d as above. Then the asymptotic distribution of ∆d, as well
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as ∆̂d, is the same as the distribution of

C =

(p−d)(h−d)∑
k=1

ωkχ
2(1), (4.22)

where the χ2(1) are independent chi-square random variables with one degree of freedom,

and ω1 ≥ ω2 ≥ · · · ≥ ω(p−d)(h−d) are the eigenvalues of the covariance matrix ΣZ defined

in Proposition 4.10.

Proof. Based on the result of Proposition 4.10, this proposition directly follows from p.112

of Eaton (1983).

Since both ∆d and ∆̂d converge in distribution to C in equation (4.22), we are now able

to determine d through the sample estimate Σ̂Z of Σz. In other words, the asymptotic

distribution of ∆̂d is approximated by

Ĉ =

(p−d)(h−d)∑
k=1

ω̂kχ
2(1), (4.23)

where {ω̂1, . . . , ω̂(p−d)(h−d)} are eigenvalues of Σ̂Z , computed using sample versions of the

various quantities required to compute ΣZ .

To conclude, we outline the algorithm for determining d. This algorithm is also referred

to as the marginal dimension test or dimension test (Weisberg, 2015; Cook, 2004).

An algorithm for choosing the dimension of S{Var[E(z|ỹ)]}

1. Compute the singular value decomposition of Ẑ to estimate U and V by their sample

versions. In addition, compute the sample version of Var(z|ỹs), s = 1, . . . , h.

2. Set m = 0.

3. Set d = m. Use formula (4.15) and the sample estimates of U0, V0 and Var(z|ỹs),

s = 1, . . . , h to calculate Σ̂Z .

4. Compute the eigenvalues of Σ̂Z and denote them as ω̂1 ≥ · · · ≥ ω̂(p−d)(p−d).



SIR and SAVE 58

5. Calculate ∆̂d using equation (4.11). Then compute the p-value as Pr(Ĉ > ∆̂κ),

where

Ĉ =

(p−d)(h−d)∑
k=1

ω̂kχ
2(1).

6. Compare the calculated p-value with the pre-determined cutoff value. If the p-value

is larger than the pre-determined cutoff value, then d = m is the final estimate. If

not, proceed as if d > m holds. Let m = m+ 1 and return to step three.

4.1.6 Comments on SIR

To close our discussions of SIR, we give some further comments on SIR.

4.1.6.1 Comment One: e.d.r. directions

Li first introduced the slice inverse regression method in 1991. In his paper, Li worked

with the formulation

y = f(βT1 x, . . . , β
T
k x, ε), (4.24)

where ε ⊥⊥ x, the β’s are an unknown vectors, and f is an unknown arbitrary function

on Rk+1. Li called the vectors β1, . . . , βk effective dimension reduction directions (e.d.r.

directions) and, correspondingly, the space spanned by these vectors an effective dimension

reduction subspace. In our discussion above, we adopted Cook’s idea instead, which uses

the formulation

y ⊥⊥ x|ΦTx. (4.25)

It is mainly because Li did not address the issues about existence and uniqueness of

the effective dimension reduction subspace. Hence, careless use of effective dimension

reduction subspaces could lead to misleading conclusions. On the other hand, the existence

and uniqueness conditions for the dimension reduction space based on (4.25) have been

established by Cook. However, it should be noted that when the central subspace exists,

the models (4.24) and (4.25) are technically equivalent. We can connect them by requiring

that the central subspace Sy|x is spanned by {β1, . . . , βk} or, equally, columns of Φ.
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4.1.6.2 Comment Two: slices

The choice of the number of slices h is often treated as a less critical issue in the analysis of

SIR. Although h may affect the asymptotic variance of the output estimate, the difference

is often considered as unimportant in practice (Li, 1991). This is probably the reason that

there is no method available to select an optimal h and choose an optimal bandwidth in

the literature (Ma and Zhu, 2013). However, different opinions have been voiced recently.

For instance, Becker and Gather (2007) showed through simulations that when h is much

larger than 0.1n, SIR results will be strongly influenced by the choice of h. Therefore,

further investigations on the choice of h might be worthwhile.

Despite there being no general rules for choosing h, some caution should be taken when

deciding on a value for h. Firstly, as we discussed in remark 4.9, h should be large enough

to satisfy min(p, h− 1) > d (Cook, 2009). Generally, we should choose h to be sufficiently

large to avoid any loss of population structure after the replacement. Secondly, in terms

of the range of each slice, it is often preferred to allow it to vary so that the number of

observations within each slice is as similar as possible (Li, 1991). Finally, in the situation

where each slice contains a fixed number L observations, Li (2000) mentioned that if the

estimated eigenvalue is smaller than 1
L , then the true eigenvalue is probably zero.

4.1.6.3 Comment Three: limitations of SIR

There two main limitations to SIR: the requirement of linear conditional expectation and

the failure of SIR under symmetry dependence. In terms of linear conditional expectation,

we require E(x|ΦTx) to be linear in ΦTx given that Sy|x = S(Φ). We have pointed out

that this assumption is realistic in many high dimensional data problems. Still, we should

always check whether linear conditional expectation is met before applying SIR, as serious

violation of the assumption will lead to wrong results. Because we do not have information

about Φ beforehand (we want to use SIR to derive Φ), a stronger condition is tested in

practice. That is, whether E(x|BTx) is linear in BTx for any arbitrary matrix B. Or

equivalently, whether x is elliptically distributed.

On the other hand, we recall that the failure of SIR under symmetry dependence is mainly

caused by the fact that SIR uses first moment only to recover the relationship between the

covariates and the response variable. To tackle this issue, methods using higher moments

have been developed. We will introduce one of such methods below.
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z1

y

0

Slice

Slice

Figure 4.2: Stylised graph of y|z = ((1, 0, . . . , 0)z)2 + ε

We see that the average of z1 within each slice is 0, but the variance of z1 changes over slices. It
follows that E(z|ỹs) = 0 for each arbitrary slice Js and Var(z|ỹs) is different for different slices.

4.2 SAVE

We introduce Sliced Average Variance Estimation(SAVE) in this section. SAVE, proposed

by Cook and Weisberg (1991), was specifically designed to overcome the inability of SIR

to detect symmetry dependence. The idea behind SAVE was that, although E(z|ỹs) = 0

for each slice Js, the variance Var(z|ỹs) does change from slice to slice (For example, see

Figure 4.2). Therefore, SAVE extracts information about the central subspace that is

missed by SIR by using the second moment as well as the first moment.

In order to understand how the information about the central subspace Sy|x is contained in

the second moment, we first assume that Sy|x = S(Φ) so that y ⊥⊥ x|ΦTx. We also assume

that x follows an elliptically contoured distribution to simplify the discussion. Since x is

elliptically distributed, a direct application of Corollary 2.18 shows that

E(x|ΦTx) = µ+ ΣΦ(ΦTΣΦ)−1ΦT (x− µ), (4.26)

Var(x|ΦTx) = w(ΦTx)[Σ− ΣΦ(ΦTΣΦ)−1ΦTΣ] (4.27)

where µ = E(x), Σ = Var(x) and w(ΦTx) is function about ΦTx through the quadratic

form (x − µ)TΦ[Var(ΦTx)]−1ΦT (x − µ). Since we have shown that standardising x and

working on the z-scale involves no loss of generality, we standardise x to be consistent with

our analysis of SIR method. Also, because we have shown that x ⊥⊥ y|ΦTx is equivalent
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to z ⊥⊥ y|ΨT z where Ψ = Σ1/2Φ, it follows from equations (4.26), (4.27) that

E(z|ΨT z) = Ψ(ΨTΨ)−1ΨT z, (4.28)

Var(z|ΨT z) = w(ΨT z)[I −Ψ(ΨTΨ)−1ΨT ]. (4.29)

We observe that Ψ(ΨTΨ)−1ΨT by its form is an orthogonal projection operator onto the

space S(Ψ) with the inner product (x, y) = xT y. By letting PΨ = Ψ(ΨTΨ)−1ΨT and

QΨ = I − PΨ, we can equally write

E(z|ΨT z) = PΨz (4.30)

Var(z|ΨT z) = w(ΨT z)QΨ. (4.31)

With these results, we are now able to derive an alternative formula for Var(z|y) via the

law of total variance:

Var(z|y) = E[Var(z|ΨT )|y] + Var[E(z|ΨT z)|y]

= E[w(ΨT z)QΨ|y] + Var(PΨz|y)

= E[w(ΨT z)|y]QΨ + PΨVar(z|y)PΨ

= wyQΨ + PΨVar(z|y)PΨ,

(4.32)

where wy := E[w(ΨT z)|y] is a function of y.

We make some important comments on the above equation. Firstly, we note that wy is a

scalar function. Therefore, assuming Ψ has rank d, wy is an eigenvalue of Var(z|y) with

multiplicity p − d and its associated eigenvectors span the space S(QΨ). The remaining

eigenvectors of Var(z|y) span the central subspace Sy|z = S(Ψ). Secondly and more

importantly, by rearranging, we observe that

wyIp −Var(z|y) = wyPΨ − PΨVar(z|y)PΨ = PΨ[wyIp −Var(z|y)]PΨ. (4.33)

The eigenvectors of wyIp − Var(z|y) are in the space S(Ψ). Thus, if we can estimate

wyIp − Var(z|y) and find its eigenvectors that correspond to nonzero eigenvalues, we can

estimate S(Ψ) by the space spanned by these eigenvectors.

In order to estimate wyIp−Var(z|y), we recall from Chapter 2 (remark 2.19) that w(ΨT z)

is a constant function if and only if z is normally distributed. Thus, by assuming x
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follows a normal distribution, we make z normally distributed and w(ΨT z) a constant.

Consequently, wy is a constant. In fact, we can further conclude that wy = 1 for all y when

x has a normal distribution (Cook and Weisberg, 1991). In this case, we do not need to

worry about the value of wy any more. We directly estimate Ip−Var(z|y) and then find its

eigenvectors. In general, to avoid negative eigenvalues, we calculate the eigenvectors via

[Ip−Var(z|y)]2 instead. Estimating [Ip−Var(z|y)]2 can be challenging due to its relatively

complicated form. To deal with this, we adopt the same approach Li used in developing

SIR. We slice the range of y into h fixed slices J1, . . . , Jh with n1, . . . , nh elements and

approximate [Ip −Var(z|y)]2 by

Σ̂save =
h∑
s=1

ns
n

(Ip − V̂ar(z|y ∈ Js))2, (4.34)

the sample version of the population quantity Σsave =
∑h

s=1 Pr(y ∈ Js)(Ip − Var(z|y ∈

Js))
2.

So far, we have outlined the key ideas of SAVE. During our discussion, we have required the

assumption that x is normally distributed. In fact, this condition can be loosened, as shown

in (Cook and Lee, 1999). For the above reasoning to hold and hence for S(Σsave) ⊆ Sy|z,

it is sufficient to require the following two conditions:

Condition 1: The conditional expectation E(x|ΦTx) is a linear function of ΦTx.

Condition 2: The matrix Var(x|ΦTx) is constant.

The first condition is automatically satisfied when x follows an elliptically contoured distri-

bution and when x is normally distributed, the second condition is automatically satisfied

(w(ΦTx) is constant in equation 4.27).

In summary, SAVE was developed using the similar methodology as SIR. SAVE is also

an extension of SIR; SIR only relies on the first moment but SAVE employs the second

moment as well. However, it should be noted that SIR has wider applicability than SAVE,

as SIR only requires the conditional expectation E(x|ΦTx) to be linear in ΦTx while,

besides the linear conditional expectation, SAVE also requires the matrix Var(x|ΦTx) to

be constant. In terms of algorithms, due to the similar ideas adopted by SIR and SAVE,

the algorithm of SAVE is exactly the same as that of SIR except that we need to replace

V̂ with the new matrix Σ̂save and let d be the dimension of S(Σsave) instead.
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4.2.1 A method for choosing the dimension of S(Σsave)

To apply SAVE in practice, we need a method for choosing the dimension d of S(Σsave).

Although SAVE has been considered a useful complement to SIR, the development of

suitable tests for d has lagged. It is technically difficult to find the asymptotic distribution

of the eigenvalues of a quadratic function of the variance, but progress has been made on

asymptotic analysis.

Following the idea behind the test proposed by Li for SIR, Cook and Ni successfully

derived the asymptotic distribution of a similar test statistic for Σ̂save in 2005. Denote

the eigenvalues of Σ̂save by λ̂1, λ̂2, . . . , λ̂p with λ̂1 > λ̂2 > · · · > λ̂p. For the hypothesis

dim(S(Σsave)) = m, Cook and Ni suggested the SAVE test statistic

∆save = n

p∑
i=m+1

λ̂i.

When n goes to infinity, ∆save approaches to a weighted linear combination of p2h indepen-

dent chi-square random variables with one degree of freedom. The weights are computed

as the eigenvalues of a symmetric matrix of size p2h× p2h. We note that when using this

test statistic, for a moderate number of slices h and dimension p, it is computationally

expensive to compute all the weights and we need a large sample for the test to be reliable.

For instance, if p = 10 and h = 20, we need to find the eigenvalues of a matrix of order

2000× 2000.

Due to this drawback, we will choose the dimension of Σsave using a computationally

feasible test for d, developed by Shao et al. (2007). Instead of working with eigenvalues,

Shao et al. (2007) proposed a different test statistic using a set of eigenvectors of Σ̂save.

Again, suppose the hypothesis is dim(S(Σsave)) = m. Let Θ, Θ̂ ∈ Rp×(p−m) be matrices

with columns being orthnormalized eigenvectors that correspond to the smallest (p−m)

eigenvalues of Σsave and Σ̂save respectively. Also, define the population quantity As =

Pr(y ∈ Js)1/2(Ip − Var(z|y ∈ Js)) and its sample estimator Âs = (ns
n )1/2(Ip − V̂ar(z|y ∈

Js)), so Σsave =
∑h

s=1A
2
s and Σ̂save =

∑h
s=1 Â

2
s. Shao, Cook and Weisberg uses the

following test statistic

Tm(Θ̂) =
n

2

h∑
s=1

tr{(Θ̂T ÂsΘ̂)2}. (4.35)
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This test statistic was first proposed by Cook (2004) for SIR and then extended to SAVE

by Shao, Cook and Weisberg. For more information and the intuition behind this test

statistic, see (Cook, 2004).

Before we study the asymptotic distribution of T (Θ̂), we introduce one more condition

that is required for the following asymptotic analysis to hold.

Condition three: For any non-zero β ∈ Sy|x and all Js, either Var{E(βTx|y ∈ Js)} > 0 or

Var{Var(βTx|y ∈ Js)} > 0 holds.

Condition three is also referred as the coverage condition. Recall that, in the above

discussion, we have shown that S(Σsave) ⊆ Sy|z under condition one and two. However,

if condition three is also satisfied, S(Σsave) = Sy|z. This equality can be proved by

contradiction. Assume S(Σsave) is a strict subset of Sy|z. Then there exists a β 6= 0 and

β ∈ Sy|z such that β ∈ S(Σsave)
⊥. It follows that (Ip−Var(z|y ∈ Js))β = 0 for all Js. Thus,

Var(βT z|y ∈ Js) = βTVar(z|y ∈ Js)β = βTβ. Consequently, Var{Var(βT z|y ∈ Js)} = 0

and

Var{E(βT z|y ∈ Js)} = Var(βT z)− E{Var(βT z|y ∈ Js)} = βTβ − βTβ = 0.

Since these results contradict condition three, we have S(Σsave) = Sy|z.

Theorem 4.12 (Shao et al. (2007)). Assume Conditions 1-3 hold and Var(ΘT z⊗ΘT z|ΨT z)

is constant. Then, under the hypothesis d = m, when n goes to infinity,

2Tm(Θ̂) −→d

∑
i

ωiχ
2
i (h− 1), (4.36)

where ωi, i = 1, . . . , (p−m)(p−m+ 1)/2 are the largest (p−m)(p−m+ 1)/2 eigenvalues

of Var(ΘT z⊗ΘT z) and χ2
i (h− 1) are independent χ2 random variables with h− 1 degrees

of freedom.

If, in addition, x is normally distributed, then

Tm(Θ̂) −→d χ
2{(h− 1)(p−m)(p−m+ 1)/2}, (4.37)

where χ2{(h−1)(p−m)(p−m+1)/2} is a χ2 random variable with (h−1)(p−m)(p−m+1)/2

degrees of freedom.



SIR and SAVE 65

Proof. Here, we only provide an outline of the proof due to its length. For the detailed

proof, see Shao et al. (2007).

Let PΘ be the projection operator for the space S(Θ). To start, we apply Lemma 2.1 of

Tyler (1981) to show that PΘ̂ = PΘ +O(n−1/2). Substituting this result into PΘ̂ÂsPΘ̂ and

using the fact that Θ̂T Θ̂ = Ip−m, we can derive that Tm(Θ̂) = Tm(Θ) + op(1). Therefore,

it is sufficient to derive the distribution of Tm(Θ).

To study the distribution of Tm(Θ), we first apply results from perturbation theory (see

Appendix B of Li (1992) and Kato (1976)) to find an approximation of Â, the formula of

which is ommited due to its length. Then, using this approximation, we obtain that

B := (ΘT Â1Θ,ΘT Â2Θ, . . . ,ΘT ÂhΘ)T

=
1

n

n∑
i=1

{gi ⊗ (ViV
T
i − Ip−m)} − E{G⊗ (V V T − Ip−m)}+ op(n

−1/2),

where Vi = ΘT zi, gi = ((1yi∈J1 − Pr(y ∈ J1)) Pr(y ∈ J1)−1/2, . . . , (1yi∈Jh − Pr(y ∈

Jh))Pr(y ∈ Jh)−1/2)T , and G = ((1y∈J1 −Pr(y ∈ J1)) Pr(y ∈ J1)−1/2, . . . , (1y∈Jh −Pr(y ∈

Jh)) Pr(y ∈ Jh)−1/2)T . 1E is an indicator function indicating whether or not the event E

is true.

Because gi⊗ (ViV
T
i − Ip−m) are independent and identically distributed with mean E{G⊗

(V V T − Ip−m)} and finite variance, the Central Limit Theorem implies that

√
nvec(B) −→d N(0,Var{G⊗ (V V T − Ip−m)}). (4.38)

We could further break down Var{G ⊗ (V V T − Ip−m)}. To simplify the notation, let

W = V V T − Ip−m. We know that Var(V ) = Var{E(V |ΨT z)} + E{Var(V |ΨT z)}. Since

Var(V |ΨT z) is constant by Condition two and E(V |ΨT z) = 0 by Condition one, we have

Var(V |ΨT z) = Var(V ) = Ip−m. Consequently, E(W |ΨT z) = 0.
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Using E(W |ΨT z) = 0 and the fact that G and W are conditional independent given ΨT z,

we derive

Var(G⊗W ) = Var{G⊗ vec(W )}

= E[Var{G⊗ vec(W )|ΨT z}]

= E[E{GGT ⊗ vec(W )vec(W )T |ΨT z}]

= E[E(GGT |ΨT z)⊗ E{vec(W )vec(W )T |ΨT z}]

= E[E(GGT |ΨT z)⊗Var(W |ΨT z)].

(4.39)

Because we have assumed that Var(W ) is nonrandom and we know that E(W |ΨT z) =

0, Var(W ) = Var(W |ΨT z). In addition, by the definition of G, we have Var(G) =

E(GGT |ΨT z). Substituting these results in to the equality (4.39) gives

Var(G⊗W ) = Var(G)⊗Var(W ) = Var(G)⊗Var(V V T ). (4.40)

Finally, by direct computation, we find that Var(G) is a projection matrix with rank h−1

and Var(V V T ) has at most (p−m)(p−m+1)/2 nonzero eigenvalues due to the symmetry

of V V T . The eigenvalues of Var(G) ⊗ Var(V V T ) are the eigenvalues of Var(V V T ), each

with multiplicity h − 1. Using these facts combining with results (4.38) and (4.40), we

obtain the desired result

2Tm(Θ̂) −→d

∑
i

ωiχ
2
i (h− 1),

with ωi, i = 1, . . . , (p−m)(p−m+1)/2, being the largest (p−m)(p−m+1)/2 eigenvalues

of Var(V V T ).

Finally, when x is normally distributed, it can be shown that ΘT z ∼ N(0, Ip−m) and

Var(ΘT z ⊗ ΘT z)/2 is a projection matrix with only eigenvalue 1 of multiplicity (p −

m)(p−m+ 1)/2. It follows that,

Tm(Θ̂) −→d χ
2{(h− 1)(p−m)(p−m+ 1)/2}.

In summary, we provide the algorithm for determining d using the test statistic Tm(Θ̂).

An algorithm for choosing the dimension of S(Σsave): d
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1. Given the standardised sample (zi, yi) for i = 1, . . . , n and slices J1, . . . , Jh, compute

and store

Âs =
(ns
n

)1/2
(Ip − V̂ar(z|y ∈ Js))

for s = 1, . . . , h. Then compute Σ̂save =
∑h

s=1 Â
2
s.

2. Perform eigenvalue decomposition on Σ̂save. Denote computed eigenvalues as λ̂1 >

· · · > λ̂p, and their corresponding orthonormalised eigenvectors as l̂1, . . . , l̂p.

3. Set m = 0.

4. Let Θ̂ = (l̂m+1, . . . , l̂p). Compute the test statistic Tm(Θ̂) = n
2

∑h
s=1 tr{(Θ̂T ÂsΘ̂)2}.

5. • When x is normally distributed:

Compute the p-value as Pr(Ĉ > 2Tm(Θ̂)), where Ĉ has asymptotic distribution

χ2{(h− 1)(p−m)(p−m+ 1)/2}

• Otherwise:

Calculate the eigenvalues of Var(Θ̂T z ⊗ Θ̂T z) and denote them as ω̂1 ≥ · · · ≥

ω̂(p−m)(p−m+1). Then compute the p-value as Pr(Ĉ > 2Tm(Θ̂)), where Ĉ has

asymptotic distribution
∑(p−m)(p−m+1)/2

i=1 ωiχ
2
i (h− 1)

6. Compare the calculated p-value with the pre-determined cutoff value. If the p-value

is larger than the pre-determined cutoff value, then d = m is the final estimate. If

not, proceed as if d > m holds. Let m = m+ 1 and return to step four.

4.3 Conclusion

SIR and SAVE are methods that use inverse regression lines and slicing techniques to

recover central subspaces. Because SIR uses the first moment only, it fails when symmetry

dependence presents. SAVE tackles this issue by employing both first and second moments.

Overall, SAVE is more comprehensive than SIR, but SIR is more efficient (Cook and Lee,

1999). We will see more concrete results in Chapter 6 when we conduct a simulation study

on SIR and SAVE. Since SIR and SAVE have their own advantages and disadvantages,

hybrid methods have been proposed. For the purpose of this thesis, we will not discuss

these hybrid methods. We refer interested readers to Zhu et al. (2007) Li and Wang (2007).





Chapter 5

pHd

In this chapter, we will continue our discussion of sufficient dimension reduction methods.

We will introduce a new type of second moment based methods, namely the Principal Hes-

sian Directions(pHd) methods. As their name suggests, pHd methods recover information

about the central subspace using the Hessian matrix of the regression function.

5.1 Principal Hessian Directions

We have mentioned during our study of the SIR that its effectiveness in reducing the

dimension of covariates can be greatly impaired when the forward regression function has

little linear trend. The non-linearity can lead to zero average within each slice, rendering

SIR ineffective. To deal with such cases, higher moments are introduced to recover the

information missed by SIR. We have studied one such method, SAVE, in the previous

chapter. SAVE adopts similar ideas and the slicing technique used by SIR so can be

seen as an extension of SIR. In this chapter, we introduce completely different second

moment based methods, the methods of principal Hessian directions(pHd). Li (1992) first

introduced the idea of using Hessian matrices to estimate central subspaces. Based on this

idea, Li then developed response based pHd (pHdy). However, there are several limitations

to response based pHd and because of these limitations, Cook (1998) suggested a modified

version: residual based pHd (pHdres).

In the following discussions, we will first briefly introduce the response based pHd method.

In particular, we want to understand where its major deficiencies come from. Then, we

will carefully examine residual based pHd to see how the drawbacks of pHdy are avoided in

69
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this modified version. To be consistent with our discussions of SIR and SAVE, we provide

a step by step algorithm for the residual based pHd method and study related dimension

tests in detail.

We also make some basic assumptions to facilitate our discussions. We assume the central

subspace exists and is spanned by the matrix Φ ∈ Rp×d, so that y ⊥⊥ x|ΦTx. Since we

have shown that there is no information lost by standardizing the covariates, we work with

the standardized predictor z hereafter. The central subspace Sy|z exists and is spanned

by the columns of Ψ := Σ1/2Φ. Therefore, it is sufficient for us to derive an estimate of

Ψ, as we can obtain Φ and consequently the desired space Sy|x = S(Φ) by a simple linear

transformation Σ−1/2Ψ. We compute the sample version ẑ by

ẑ = Σ̂−1/2(x− x̄),

where Σ̂ and x̄ are sample estimates of Σ = Var(x) and E(x).

5.1.1 Response based pHd

Li (1992) proposed response based pHd shortly after he introduced SIR. To begin our dis-

cussion of response based pHd, we introduce the key idea that motivated the development

of pHd in the first place. Consider a set of independent and identically distributed data

(yi, xi), i = 1, . . . , n, with each xi standardized to ẑi. Also, denote the Hessian matrix of

the forward regression as H(z) ∈ Rp×p, which is of the form:

H(z) =
∂2E(y|z)
∂z∂zT

. (5.1)

Since we have assumed that the central subspace Sy|z has a basis Ψ, we can replace the

conditional mean E(y|z) with E(y|ΨT z), which results in

H(z) =
∂2E(y|ΨT z)

∂z∂zT

= Ψ
∂2E(y|ΨT z)

∂(ΨT z)∂(zTΨ)
ΨT .

(5.2)

This representation of the hessian matrix H(z) shows that H(z) is degenerate in any direc-

tion that is orthogonal to Sy|z. Furthermore, we observe all the eigenvectors corresponding

to nonzero eigenvalues of E[H(x)] are in Sy|z. Hence, by finding a way to estimate the

average hessian matrix E[H(z)], we should be able to find at least a subspace, spanned by
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the eigenvectors of E[H(z)] that associated with nonzero eigenvalues, of Sy|z. Based on this

idea, the response based Principal Hessian directions (pHdy) method extracts information

about Sy|z by providing us with estimates of these eigenvectors.

In order to construct estimates of E[H(z)] and consequently its eigenvectors, Li (1992)

applied Stein’s lemma, introduced below.

Lemma 5.1 (Stein’s Lemma). (Stein (1981)) Let Y be a normally distributed random

variable with mean ξ and variance 1. Also, we assume g, g′ are indefinite integrals of the

Lebesgue measurable function g′ and g′′ and all g, g′, g′′ have finite expectations. Then

E{(Y − ξ)g(Y )} = Eg′(Y ), (5.3)

E{(Y − ξ)2g(Y )} = E{g(Y ) + g′′(Y )}. (5.4)

Proof. Because this lemma is covered in many textbooks, we only provide a sketch of the

proof. For a detailed proof, we refer interested readers to Stein (1981).

Let φ(y) be the density of Y . We prove equation (5.3) mainly by applying integration by

parts to Eg′(Y ) =
∫∞
−∞ g

′(y)φ(y)dy. During the process, we also need the equality that

φ′(y) = −yφ(y) to substitute φ′(y) with −yφ(y) and Fubini’s theorem to change order of

integration. Then the result follows.

Equation (5.4) is a consequence of equation (5.3). Without loss of generality, we assume

ξ = 0. We prove equation (5.4) as follows:

E{Y 2g(Y )} = E[Y {Y g(Y )}] = E{Y g(Y )}′ = E{g(Y ) + Y g′(Y )} = E{g(Y ) + g′′(Y )}.

(5.5)

Here, equation (5.3) is used in the second and the last steps.

Remark 5.2. Landsman and Neslehova (2008) showed that Stein’s Lemma can be extended

to multivariate normal vectors. Suppose Y ∈ Rp is a multivariate normal vector with mean

ξ and variance matrix I. Also, let g : Rp 7→ R be a differentiable function such that

∫
Rp

‖∂g(Y )

∂Yi
‖dv(Y ) <∞, i = 1, . . . , p

∫
Rp

‖∂
2g(Y )

∂Yi∂Yj
‖dv(Y ) <∞, i, j = 1, . . . , p
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where v is the measure of Y . Then

E{(Y − ξ)g(Y )} = E∇g(Y ), (5.6)

E{g(Y )(Y − ξ)(Y − ξ)T } = E{g(Y )I +
∂2g(Y )

∂Y ∂Y T
}. (5.7)

The proof for the above equations is very similar to the proof of Lemma 5.1. We refer

interested readers to Landsman and Neslehova (2008) for details.

Since equation (5.7) can be rearranged as

E{ ∂
2g(Y )

∂Y ∂Y T
} = E{g(Y )(Y − ξ)(Y − ξ)T } − E{g(Y )I}, (5.8)

Stein’s lemma provides an alternative way to compute the expectation of the second deriva-

tive of a function when Y is distributed normally with variance I. Hence, if we further

assume that x follows a normal distribution, we can use this formula to compute the ex-

pectation of the Hessian matrix E[H(z)]. We replace the g(x) function with E(y|z). Then

equation (5.8) gives

E{∂
2E(y|z)
∂z∂zT

} = E{E(y|z)zzT } − E{E(y|z)I}

= E{E(yzzT |z)} − E(y)I

= E(yzzT )− E(y)E(zzT )

= E((y − E(y))zzT ).

(5.9)

By denoting Σyzz := E((y − E(y))zzT ), we conclude that

Σyzz = ΦE(
∂2E(y|ΦT z)

∂(ΦT z)∂(zTΦ)
)ΦT

and consequently Σyzz ∈ Sy|z. Therefore, estimating Sy|z with the response based Hessian

matrix is, in essence, finding the eigenvectors corresponding to the non-zero eigenvalues

of the population moment matrix Σyzz. We denote the ordered eigenvalues of Σyzz as

δ1, . . . , δp with |δ1| ≥ |δ2| · · · ≥ |δp| and their associated eigenvectors as l1, . . . , lp. If the

rank of Σyzz is d, l1, . . . , ld are then called the principal Hessian directions (Li, 1992). Our

pHdy estimate of Sy|z is the space spanned by l1, . . . , ld, denoted as Syzz.
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Finally, we need to develop tests for determining d to apply pHdy in practice. Similar to

what we have did for SIR, we introduce the test statistic

∆̂pHdy(m) =
n

2V̂ar(y)

p∑
j=m+1

δ̂2
j .

Li (1992) proved that

∆̂pHdy(m) ∼ χ2{(p−m)(p−m+ 1)/2},

We use this asymptotic result to estimate d by testing hypotheses d = m vs d > m,

starting from m = 0.

So far, we have outlined the idea behind pHdy and how we proceed with this method to

derive an estimate of the central subspace. Although it is straightforward and easy to

apply, pHdy has several drawbacks that greatly hinder its use in applications. To start,

the pre-requirement for pHdy to work is fairly strict. pHdy requires x to be normally

distributed, as it relies on Stein’s lemma to estimate E[H(z)]. However, given that y ⊥⊥

x|ΦTx, SIR simply requires the conditional expectation for the predictor to be linear for

Φ, a much looser condition that is generally met in most high dimensional data problems.

SAVE additionally requires constant variance, but still has wider applicability than pHdy.

More importantly, Cook (1998) pointed out that pHdy is not effective in finding linear

trends. Since the Hessian matrix H(z) is a second order differential operator, it does not

change when a linear term of the predictor is added to the regression function. When the

true regression is a linear function of the covariate, for instance,

y|z = α+ ηT z + ε, (5.10)

where z normally distributed, ε ⊥⊥ z and E(ε) = 0, it straightforward to see that H(z) = 0

and consequently E[H(z)] = Σyzz = 0. Because of these properties of H(z), it is likely

that pHdy cannot produce satisfactory estimate when linear trends present. An example

showing pHdy’s lack of ability in detecting linear trends was given in (Cook, 1998). In

his example, the plot of all data points and the fitted regression using the ordinary least

squares (OLS) exhibited a clear linear relationship. However, applying the pHdy method

suggested one important direction, which lead to an inappropriate curved relationship

between the response and the predictor. The sample correlation is low at 0.11.
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However, there are still cases when pHdy does have some power in revealing linear trends

(For instance, see section 4.1 of Cook (1998)). The reason behind this surprising re-

sult is also the cause for the third and the last drawback of pHdy we will cover. An

extra condition was implicitly assumed when Li proved the asymptotic result for the

test statistic ∆̂save(m) (Cook, 2009, 1998; Weisberg, 2015). Let β = Cov(z, y) and

Θ0 = (ld+1, . . . , lp), the eigenvectors of Σyzz corresponding to the eigenvalue 0. In Li’s

proof, Li used the condition ΘT
0 β = 0 to derive the final asymptotic result. This condi-

tion, however, is not generally true. To illustrate, we consider the model (5.10). In this

case, d = dim(Syzz) = dim(0) = 0, Θ0 is the identity matrix and β = η, so ΘT
0 β is clearly

nonzero. Since the condition ΘT
0 β = 0 does not always hold, the method used by pHdy for

choosing d could be unreliable. Furthermore, in the proof, Li showed that the asymptotic

distribution of ∆̂save(m) is dependent on β via ΘT
0 β. Because ΘT

0 β is not necessarily zero,

the distribution of ∆̂save(m) can depend on β, contrary to Li’s claim. This dependence

relationship also accounts for pHdy’s success in detecting linear trends in some cases. In

summary, depending on whether ΘT
0 β = 0, pHdy’s performance in estimating the central

subspace may fluctuate drastically, causing unnecessary complexities. We will provide

more information about the assumption ΘT
0 β = 0 in our later discussions of choosing d

for pHdres.

Given the above discussions, pHdy has stricter requirements, compared to other available

methods. To apply pHdy, we need x to be normally distributed and ΘT
0 β = 0. Assuming

x follows a normal distribution, a possible scenario for pHdy to work consistently is when

Syzz = Sy|z, as this condition forces ΘT
0 β = 0. Still, with ΘT

0 β = 0, pHdy is highly

unlikely to detect any linear trend. Due to all these complexities and restrictions of pHdy,

an improved and modified version of pHdy is needed.

5.1.2 Residual based pHd

Development of Residual based pHd is mainly motivated by the fact that pHdy is, in

general, not effective in revealing linear trends of forward regressions. Thus, to maximise

the use of Hessian matrices in extracting information about the central subspace, Cook

(2009) suggested that we start by removing the linear relationship between the response

variable and the predictor variable from the response variable. Then we can apply the

pHdy method on the residual to obtain an estimate of the central subspace for the residual.

Hopefully, the union of the linear coefficient vector and the pHdy estimate based on the
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residual can provide us with a satisfactory estimate of the central subspace Sy|z. Because

this method estimates Sy|z mainly relying on pHdy except, in this case, pHdy is applied

to the residuals instead of the response variable, we call this method residual based pHd

(pHdres).

We know that a useful tool for estimating linear relationships is ordinary least square(OLS)

regression of y on z. Thus, we can study the population OLS residual e, calculated as

e = y − E(y)− βT z, (5.11)

where β := Cov(z, y). In terms of sample residuals êi, we let ẑ be the sample version of

the standardized predictor. Then, given the standardized data set (yi, ẑi), i = 1, . . . , n, we

compute sample residuals êi similarly by

êi = yi − ȳ − β̂T ẑi. (5.12)

Here, we apply OLS regression of y on ẑ to obtain an estimate β̂ of the linear coefficient

β.

Since the linear trend has been removed, pHdy should be effective in recovering the central

subspace for the regression of e on z. Let Se|z denote this central subspace. Both β and

Se|z can be easily described using the formula Cov(z, y) and pHdy. Thus, if we can verify

that the union of β and Se|z is at least a subspace of Sy|z, pHdres should be an effective and

efficient method for finding an approximation to the central subspace Sy|z. To unravel the

relationship between Se|z∪S(β) and Sy|z, we start by investigating the connection between

β and the central subspace Sy|z.

We recall that β is the solution that minimizes the objective function R(a, b) := E(L(a+

bT z, y)), where L(a+ bT z, y) = (y − a− bT z)2 and the expectation is with respect to the

joint distribution of y and z. That is

(E(y), β) = arg min
a,b

R(a, b).

Here, we point out that the loss function L takes input variables (a + bT z, y) instead of

(z, y) due to its underlying assumption that the objective function has a linear kernel

a+ bT z. Since, in this setting, the explicit form of the loss function L shows it is a strictly
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convex function about a + bT z, a theorem from Li and Duan (1989) can shed some light

on the connection between β and Sy|z.

Theorem 5.3 (Li and Duan (1989)). Let Sdrs(Φ) be a dimension-reduction subspace for

the regression of y on x. Also assume

(α, βx) = arg min
a,b

R(a, b) := arg min
a,b

E[L(a+ bTx, y)].

Then βx ∈ Sdrs(Φ), if

1. βx is unique.

2. L(u, v) is convex in u.

3. The conditional expectation E(x|ΦTx) is a linear function of ΦTx and Σ = Var(x)

is positive definite.

Proof. The key to the proof is to use Jensen’s inequality. To do so, we first write R(a, b)

as a conditional expectation incorporating the fact that Sdrs(Φ) is a dimension reduction

subspace, that is y ⊥⊥ x|ΦTx:

R(a, b) = E[L(a+ bTx, y)] = Ey,ΦT xEx|y,ΦT x[L(a+ bTx, y)]

= Ey,ΦT xEx|ΦT x[L(a+ bTx, y)].
(5.13)

Given that L is convex in its first argument, Jensen’s inequality gives that

R(a, b) ≥ Ey,ΦT x[L{a+ bTE(x|ΦTx), y}].

Without loss of generality, we assume that E(x) = 0. Since E(x|ΦTx) is linear in ΦTx, by

Proposition 4.1, we derive

R(a, b) ≥ Ey,ΦT x[L(a+ (PΦ(Σ)b)
Tx, y)].

It follows that

R(a, b) ≥ R(a, PΦ(Σ)b).

We know that PΦ(Σ)b ∈ Sdrs(Φ). Because a, b are arbitrary, βx is a minimiser and βx is

unique, we must have βx ∈ Sdrs(Φ).
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In our setting, condition two of the theorem is automatically satisfied, as L(a+ bT z, y) =

(y − a − bT z)2 is convex by definition. Moreover, we note that L(a + bT z, y) is actually

strictly convex, ensuring the uniqueness of β. Therefore, given this theorem, we can force

β ∈ Sy|z(Ψ) by requiring E(z|ΨT z) = PΨz.

So far, we have shown that when E(z|ΨT z) = PΨz, β ∈ Sy|z(Ψ). We are now interested

in the relationship between Se|z and Sy|z under the assumption E(z|ΨT z) = PΨz. In fact,

by adding the additional requirement that E(z|ΨT z) = PΨz, the combination of Se|z and

S(β) recovers the whole central subspace.

Proposition 5.4 (Cook (2009)). Let (yi, xi), i = 1, . . . , n be a set of i.i.d data and zi’s be

standardised predictor variables. Also let ei be defined as in the equation (5.11). Assume

that the central subspaces Se|z and Sy|z are spanned by the columns of the matrices Υ and

Ψ respectively. Then if E(z|ΨT z) = PΨz, we have

Sy|z = Se|z + S(β). (5.14)

Proof. To prove the proposition, we first observe that, by the definition of e and Υ, we

have

y − βT z ⊥⊥ z|ΥT z.

Then, direction applications of Propositions 3.1 and 3.2 on conditional independence give

y − βT z ⊥⊥ z|(ΥT z, βT z)

and

(y − βT z, βT z) ⊥⊥ z|(ΥT z, βT z).

Applying Proposition 3.2 again shows that

y ⊥⊥ z|(ΥT z, βT z),

which indicates that S(Υ, β) is also a dimension reduction subspace for the regression of

y on z. Since the central subspace Sy|z is contained in any dimension reduction subspace,

Sy|z ⊂ S(Υ, β) = Se|z + S(β). (5.15)
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Because we have assumed that E(z|ΦT z) = PΦz, by Theorem 5.3, we know β ∈ Sy|z. In

addition, as β ∈ Sy|z, the formula

e = y − E(y)− βT z (5.16)

implies that Se|z ⊂ Sy|z. Combining these results with equation (5.15) , we have the

desired conclusion

Sy|z ⊂ SΥ,β ⊂ SΨ,β = Sy|z. (5.17)

Remark 5.5. We point out that the key assumption for the above proposition to hold is

E(z|ΨT z) = PΨz. The reasons for its importance are twofold. Firstly, this assumption is

required to apply the Theorem from Li and Duan in order to force β ∈ Sy|z. Secondly, it

is the fact β ∈ Sy|z that leads us to conclude that Se|z ⊂ Sy|z. If β /∈ Sy|z, the regression

of the residual on z can be more complicated than the regression of y on z. To be more

specific, when β /∈ Sy|z, we will have dim[Se|z] > dim[Sy|z], as the formula (5.16) indicates

the central subspace Se|z has to contain the dimension determined by β. As a side note,

we also remind the reader that the central subspace can be trivial. For example, if the

regression of y over z follows a linear model

y|z = β0 + β1z + ε,

we have Se|z = 0.

In general, given the existence of Sy|z and Se|z, we have Sy|z ⊂ S(Υ, β) = Se|z + S(β).

However, with the additional assumption of E(z|ΦT z) = PΦz, Se|z + S(β) is restricted to

be a subset of Sy|z, establishing the equality.

This Proposition establishes a nice equivalence relationship between the desired result

Sy|z and the union of Se|z and S(β) under the key assumption that E(z|ΨT z) = PΨz. We

observe that this assumption is similar to the defining condition of elliptically contoured

distributions. A random variable x is elliptically distributed if and only if E(z|BT z) is

linear function in BT z for all conforming matrix B. Because our requirement E(z|ΨT z) =

PΨz only requires it to be true at a fixed matrix Φ, it is more specific and less strict than

that of elliptically distributed variables. The assumption E(z|ΨT z) = PΨz is therefore

automatically satisfied when z has a elliptically contoured distribution.
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Since we are working with linear regression, S(β) can be easily computed. We now focus

on recovering the central subspace of the regression of e on z using the key idea behind

pHdy.

5.1.3 Estimating Se|z

We now estimate the central subspace Se|z. Based on the key idea of pHdy, we want

to estimate Se|z with the eigenvectors corresponding to the non-zero eigenvalues of the

expected Hessian matrix for the regression function on the residual:

E[He(z)] = E(
∂2E(e|z)
∂z∂zT

) = ΥE(
∂2E(e|ΥT z)

∂(ΥT z)∂zTΥ
)ΥT . (5.18)

We know that S(E[He(z)]) ⊆ Se|z due to the formula of E[He(z)]. The only question

remains is that how do we derive an explicit form for the expected Hessian matrix in order

to compute its eigenvectors and eigenvalues?

We recall in pHdy, Li (1992) used Stein’s Lemma to estimate Σyzz under the assumption

z is normally distributed. Since this pre-requirement is fairly strict, Cook (1998) extended

and refined Li’s idea to estimate Se|z under relatively loose assumptions. In the following,

we will quickly go through the procedure for estimating Se|z using Li’s proposal. After

that, we will carefully discuss Cook’s approach.

We assume that z is normally distributed. With the help of Stein’s Lemma, equation (5.8)

gives

E{∂
2E(e|z)
∂z∂zT

} = E{zzTE(e|z)} − E{E(e|z)}

= E{E(ezzT |z)} − E(e)

= E(ezzT ).

(5.19)

Denoting E(ezzT ) as Σezz, we have

Σezz = ΥE(
∂2E(e|ΥT z)

∂(ΥT z)∂zTΥ
)ΥT .

Let Sezz := S(Σezz). Then Sezz ⊆ Se|z. Thus, we estimate Se|z by finding Sezz, which is

spanned by the eigenvectors that correspond to nonzero eigenvalues of Σezz.
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5.1.3.1 Cook’s approach

In this subsection, we follow Cook (2009)’s idea to estimate Se|z. Instead of requiring z

to be normally distributed, Cook loosened the condition to require E(z|ΥT z) = PΥz only.

Although Cook did not rely on Stein’s Lemma, he adopted Li’s idea and estimated Se|z

by establishing a connection between Se|z and Σezz as well.

To start, we want to find the properties of Σezz when E(z|ΥT z) = PΥz.

Proposition 5.6. Assume the central subspace Se|z is spanned by columns of Υ. Let PΥ

be an orthogonal projection operator for Sy|z and QΥ = I −PΥ. Then if E(z|ΥT z) = PΥz,

we have

Σezz = QΥE[e×Var(z|ΥT z)]QΥ + PΥΣezzPΥ. (5.20)

Proof. Firstly, we recall that when E(z|ΥT z) = PΥz, a direct application of Proposition

4.1 gives

E(z|e) = PΥE(z|e) ∈ Se|z(Υ). (5.21)

Secondly, from the law of total variance, we can write

Σz|e := Var(z|e)

= E[Var(z|ΥT z, e)|e] + Var[E(z|ΥT z, e)|e]

= E[Var(z|ΥT z)|e] + Var[E(z|ΥT z)|e] (because e ⊥⊥ z|ΥT z)

= E[Var(z|ΥT z)|e] + PΥΣz|ePΥ (using the equation E(z|ΥT z) = PΥz).

(5.22)

Combining the above results, we can obtain

E(zzT |e) = Σz|e + E(z|e)E(zT |e)

= E[Var(z|ΥT z)|e] + PΥΣz|ePΥ + PΥE(z|e)E(zT |e)PΥ (using the equation (5.21))

= E[Var(z|ΥT z)|e] + PΥE(zzT |e)PΥ

= QΥE[Var(z|ΥT z)|e]QΥ + PΥE(zzT |e)PΥ.

(5.23)

The last equality uses the facts that Var(z|ΥT z) = Var(PΥz+QΥz|ΥT z) = Var(QΥz|ΥT z)

and QΥ is an orthogonal projector.
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Since Σezz = E[e× E[zzT |e]], we hence conclude:

Σezz = QΥE[e×Var(z|ΥT z)]QΥ + PΥΣezzPΥ. (5.24)

This proposition tells us that when E(z|ΥT z) = PΥz, the eigenvectors, corresponding

to nonzero eigenvalues, of Σezz must be in either Se|z(Υ) or its orthogonal complement.

However, there is no clear cut way to distinguish which eigenvectors belong to Se|z(Υ)

and which eigenvectors contain no information about Se|z(Υ). However, when dim(Sezz)

is small, which is often the case in practice, we can use graphical methods to make a

decision. For example, we may need to plot the response variable against the direction of

each eigenvector and then rule out eigenvectors for which the graphs show independence

relationships. Once we can develop a method for determining the rank of Sezz, it is feasible

to identify Se|z related eigenvectors with graphs in this way.

Remark 5.7. We observe that if we impose a further restriction by making Var(z|ΥT z)

constant, we will have

Σezz = QΥE[e×Var(z|ΥT z)]QΥ + PΥΣezzPΥ = PΥΣezzPΥ.

As a result, Sezz is a subspace of Se|z. We then proceed in the same way as Li (1992)

suggested.

In fact, we recall from Chapter two that when z is normally distributed, E(z|ΥT z) = PΥz

and Var(z|ΥT z) is constant. Hence, z being normally distributed can be seen as a special

case of the conditions required by Cook. It follows that, when z is normally distributed,

we can estimate Se|z by either Cook’s method or Li’s method; the derivation of these

methods is different but the implementation is the same. That is, we estimate Se|z with

Sezz.

To end our short discussion of Cook’s methodology, we emphasise that for Cook’s method-

ology to work, we require E(z|ΥT z) = PΥz in addition to E(z|ΦT z) = PΦz, where Υ and Φ

span Se|z and Sy|z respectively. Although it seems that S(Υ) and S(Φ) only differ by the

vector β, these two conditions do not necessarily imply to each other. Nevertheless, if z

has an elliptically contoured distribution, these two conditions are automatically satisfied.
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5.1.4 pHdres algorithm

We summarise the step-by-step algorithm for pHdres. Assume we are given a set of

independent and identically distributed samples (xi, yi), i = 1, . . . , n.

1. Standardizing covariate variables. Denote the sample variance of x as Σ̂ and the

sample mean as x̄. Then compute the standardized covariates as

ẑi = Σ̂−1/2(xi − x̄).

2. Compute β̂ = Cov(ẑ, y) and ȳ.

3. Given β̂ and ȳ, calculate the residual êi := yi − ȳ − β̂T ẑi for i = 1, . . . , n.

4. Calculate the sample estimate of the population moment matrix Σezz, using the

formula

Σ̂ezz =
1

n

n∑
i=1

êiẑiẑ
T
i .

5. Perform the eigenvalue decomposition of Σ̂ezz. Denote the eigenvalues as δ̂1, . . . , δ̂p,

with |δ̂1| ≥ . . . |δ̂p|, and their associated eigenvectors as l̂1, . . . , l̂p.

6. Let d = dim(Sezz). The span of l̂1, . . . , l̂d gives an estimate Ŝezz.

• Assume Υ spans Se|z and d is small. If E(z|ΥT z) = PΥz, use graphs to deter-

mine which eigenvecoters of l̂1, . . . , l̂d estimate Se|z. Denote these vectors by

l̂e1, . . . , l̂
e
d. The union of span(l̂e1, . . . , l̂

e
d) and S(β̂) is the pHdres estimate of the

central subspace Sy|z.

• If E(z|ΥT z) = PΥz and Var(z|ΥT z) is a constant, Sezz ⊂ Se|z. The union of

Ŝezz and S(β̂) is the pHdres estimate of the central subspace Sy|z.

7. Finally, since Sy|x = Σ−1/2Sy|z, back transform the pHdres estimate by left multi-

plying Σ̂−1/2 to obtain the pHdres estimate of Sy|x.

We make some comments about the pHd algorithm listed above. Firstly, it is important

to note that for the above procedure to work, we have implicitly assumed that:

E(z|ΨT z) = PΨz,
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given Sy|z = S(Ψ). Secondly, the idea of using Hessian principal directions is used to

estimate the space Sezz. If we back-transform the eigenvectors l̂1, . . . , l̂d to the original

scale and denote them as û1 := Σ̂−1/2 l̂1, . . . , ûp := Σ̂−1/2 l̂p, we can refer to the linear

combinations ûT1 x, . . . , û
T
d x as pHd predictors. Finally, we point out that although we

introduced two different methods (one from Li and one from Cook) for estimating Se|z,

they both result in estimating Se|z with Sezz. Li requires x to be normally distributed and

concludes that Sezz ⊂ Se|z. Cook’s method is more general and only requires E(z|ΥT z) =

PΥz. Depending on whether Var(z|ΥT z) is a constant or not, we can either conclude

Sezz ⊂ Se|z or use graphical methods to estimate Se|z. It is important to note that

graphical methods are feasible only when the dimension of Sezz is small.

5.1.5 A method for choosing the dimension of Sezz

In this section, we introduce a method to choose the dimension d = dim(Sezz) = dim(S(Σezz))

so we can use pHdres in practice. Similarly to the method proposed for SIR, a widely used

method is to formulate a test statistic for d, find the asymptotic distribution of such test

statistic, and then test hypotheses about d to choose a value of d. Adopting this idea, we

introduce the following test statistic, proposed by Li (1992):

∆̂pHdres(m) =
n
∑p

j=m+1 δ̂
2
j

2Var(ê)
. (5.25)

The asymptotic distribution of ∆̂pHdres(m) has been carefully studied by both Li and

Cook. We combine their results in the following proposition.

Proposition 5.8. Let d be the dimension of the space Sezz and define ∆̂d as in the equation

(5.25). The asymptotic distribution of ∆̂pHdres(d) is the same as

C =
1

2Var(e)

(p−d)(p−d+1)/2∑
j=1

ωjχ(1), (5.26)

where the χ(1)’s are independent Chi-square variables, each with one degree of freedom

and ω1 ≥ · · · ≥ ω(p−d)(p−d+1)/2 are eigenvalues of the matrix Var(eW ). Here, W is defined
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as

W :=





v2
1 − 1
√

2v1v2
√

2v1v3

...
√

2v1vp−d


...

v2
j − 1

√
2vjvj+1

...
√

2vjvp−d


...

v2
p−d−1 − 1

√
2vp−d−1vp−d

(v2
p−d − 1)





∈ R(p−d)(p−d+1)/2×1, (5.27)

where v1 = lTd+1z, . . . , vp−d = lTp z and ld+1, . . . , lp are eigenvectors of Σezz corresponding

to the zero eigenvalues of Σezz.

Before we prove the Proposition, we introduce the following classical results from pertur-

bation theory (see, for example Kato (1976), Eaton and Tyler (1991)), because they play

an important role in the proof of the Proposition.

Lemma 5.9. Consider the second-order expansion

T (w) = T + wT (1) + w2T (2) + o(w2)

where T (w), T, T (1), T (2) ∈ Rp×p are symmetric matrices and the rank of T is k. Let λ(w)

be the sum of the p − k eigenvalues of T (w) that are closest to 0, and let Π(w) be the

projection matrix of the space spanned by the p − k associated eigenvectors. Also denote

the projection matrix of the null space of T to be Π, so that ΠT = TΠ = 0. Then,

Π(w) = Π− wΠT (1)T †T †T (1)Π + o(w), (5.28)

and

λ(w) = wλ(1) + w2λ(2) + o(w2), (5.29)
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with λ(1) = tr(T ′Π), λ(2) = tr[T (2)Π − T (1)T †T (1)Π]. Here the superscript † denotes the

Moore-Penrose generalised inverse of a matrix.

We are now ready to prove the proposition.

Proof. Since the problem of interest is invariant under affine transformation, we assume

that E(y) = 0. We also define the following terms to simplify our discussions:

βe = Cov(z, e),

Ξi = ziz
T
i − Ip, Ξ̄ =

1

n

n∑
i

Ξi,

and

Ci = eiΞi − Σezz, C̄ =
1

n

n∑
i

Ci.

We note that we are interested in the distribution of the sum of squared eigenvalues while

the Lemma 5.9 concerns the sum of eigenvalues. To overcome this limitation and apply

Lemma 5.9 in our context, we use the fact that the eigenvalues of Σ̂ezzΣ̂
T
ezz are exactly

the square of the eigenvalues of Σ̂ezz. Hence, to start, we need to find the second-order

expansion of Σ̂ezzΣ̂
T
ezz. Given the formula for Σ̂ezz and Σezz, direct calculation gives

Σ̂ezzΣ̂
T
ezz = ΣezzΣezz+(BnΣezz+ΣezzBn)+{BnBn+op(n

−1/2)Σezz+Σezzop(n
−1/2)}+op(n−1),

(5.30)

where

Bn = C̄ − z̄βTe − βTe z̄T − (1/2)Ξ̄Σezz − (1/2)ΣezzΞ̄.

Let Θ0 ∈ Rp×(p−d) be a matrix with columns ld+1, . . . , lp. Since Σezz is symmetric (the

eigenvectors form an orthonormal basis), P0 := Θ0ΘT
0 is a projection matrix associated

with the null space of Σezz. Then, with equation (5.30) and the fact that P0Σezz =

ΣezzP0 = 0, Lemma 5.9 shows that

p∑
j=d+1

δ̂2
j =tr{(BnΣezz + ΣezzBn)P0}+ tr[{BnBn + op(n

−1/2)Σezz + Σezzop(n
−1/2)}P0]

− tr{(BnΣezz + ΣezzBn)(ΣezzΣezz)
†(BnΣezz + ΣezzBn)P0}+ op(n

−1).

(5.31)
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Since P0Σezz = ΣezzP0 = 0, P0P0 = P0 and trace operator is invariant under cyclic

permutations, we derive that

tr{(BnΣezz + ΣezzBn)P0} = tr(ΣezzP0Bn) + tr(P0ΣezzBn)

= 0,

and

tr[{BnBn + op(n
−1/2)Σezz + Σezzop(n

−1/2)}P0]

=tr(BnBnP0P0) + tr(P0Σezzop(n
−1/2)) + tr(P0Σezzop(n

−1/2))

=tr(P0BnBnP0).

Similarly,

tr{(BnΣezz + ΣezzBn)(ΣezzΣezz)
†(BnΣezz + ΣezzBn)P0}

=0 + tr{BnΣezz(ΣezzΣezz)
†ΣezzBnP0}+ 0

=tr{P0BnΣezz(ΣezzΣezz)
†ΣezzBnP0}.

Substituting the above results into equation (5.31), we obtain that

p∑
j=d+1

δ̂2
j = tr(P0BnBnP0)− tr(P0BnΣezz(ΣezzΣezz)

†ΣezzBnP0) + op(n
−1)

= tr(P0BnP0BnP0) + op(n
−1)

= tr[(ΘT
0 BnΘ0)2] + op(n

−1).

(5.32)

As a result, the asymptotic distribution is the same as the asymptotic distribution of

∆∗d =
n

2Var(e)
tr[(ΘT

0 BnΘ0)2] =
n

2Var(e)

p−d∑
i,j

(ΘT
0 BnΘ0)2

i,j , (5.33)

where (ΘT
0 BnΘ0)2

i,j is the ijth elements of ΘT
0 BnΘ0.
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Next, we evaluate ΘT
0 BnΘ0 to find the asymptotic distribution of ∆∗d. Because, by defini-

tion, ΣezzΘ0 = 0 and βe = 0, we have

ΘT
0 BnΘ0 = ΘT

0 [C̄ − z̄βTe − βTe z̄T −
1

2
Ξ̄Σezz −

1

2
ΣezzC̄]Θ0

= ΘT
0 C̄Θ0

=
1

n

n∑
i

[ei(Θ
T
0 ziz

T
i Θ0 −ΘT

0 Θ0)]−ΘT
0 ΣezzΘ0

=
1

n

n∑
i

[ei(Θ
T
0 ziz

T
i Θ0 − Ip−d)].

(5.34)

We observe that ΘT
0 BnΘ0 is in fact an average of independent and identically distributed

matrices with mean E[ei(Θ
T
0 ziz

T
i Θ0 − Ip−d)] = ΘT

0 ΣezzΘ0 = 0. Thus, given the definition

of W , we conclude that 1√
n

∑n
i=1 eiWi is asymptotically normally distributed with mean

0 and variance Var(eW ) by the multivariate Central Limit Theorem.

Finally, because

∆∗d =
n

2Var(e)

p−d∑
i,j

(ΘT
0 BnΘ0)2

i,j =
1

2Var(e)
‖ 1√

n

n∑
i=1

eiWi‖2

and
1√
n

n∑
i=1

eiWi −→d N(0,Var(eW )),

following a similar argument to that of Proposition 4.11 gives the desired final result.

Remark 5.10. We point out that the proof of the asymptotic behaviour of ∆̂pHdres(m) is

in fact almost identical to the proof used by Li in proving the asymptotic distribution of

the test statistic ∆̂pHdy(m) for pHdy. In Li’s original proof for the asymptotic distribution

of ∆̂pHdy(m), he implicitly assumed that ΘT
0 β = 0. Since this assumption is in general not

true, the proof is not always valid. However, in the pHdres case, because the regression

is no longer of the response y but of e on z, the coefficient βe = Cov(z, e) has to be zero.

Consequently, ΘT
0 βols = 0 will always hold and the asymptotic result for ∆̂pHdres(m) will

always be true.

With the above proposition, we are now able to choose d using the statistic ∆̂d. We give

the detailed procedure below.

An algorithm for choosing the dimension d of Sezz
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1. Set m = 0.

2. Set d = m. Given d, form an estimate Ŵi of the matrix Wi as defined in equation

(5.27) using l̂d+1, . . . , l̂p and ẑ1, . . . , ẑn.

3. Estimate Var(eW ) by computing the variance matrix Σ̂eW of vectors êiŴi, i =

1, . . . , n.

4. Compute the eigenvalues of Σ̂eW and denote them as ω̂1 ≥ · · · ≥ ŵ(p−d)(p−d+1)/2.

5. Calculate ∆̂pHdres(d) using equation (5.25). Then compute the p-value as Pr(Ĉ >

∆̂pHdres(d)), using the result that the asymptotic distribution is the same as that of

Ĉ =
1

2Var(ê)

(p−d)(p−d+1)/2∑
j=1

ω̂jχ(1),

where the χ(1)’s are independent Chi-square distribution variables, each with one

degree of freedom.

6. Compare the calculated p-value with the pre-determined cutoff value. If the p-value

is larger than the pre-determined cutoff value, then d = m is the final estimate. If

not, proceed as if d > m holds. Let m = m+ 1 and return to step two.

5.2 Conclusion

In this chapter, we have introduced two methods based on principal Hessian directions:

pHdy and pHdres. pHdy was developed first and is more straightforward, as we directly

use the average Hesssion matrix of the regression function to estimate the central subspace.

However, there are several serious drawbacks of pHdy: pHdy requires x to be normally

distributed; it is not effective in detecting linear trends, and its asymptotic analysis may

not always hold. Due to these drawbacks of pHdy, pHdres, a modified version of pHdy,

was proposed. pHdres first removes the linear trend from the response variable using OLS.

Then it uses the average Hessian matrix of the regression of residual on z to estimate Se|z.

Finally, it combines the OLS estimate with the estimate of Se|z to approximate the central

subspace Sy|z. The application of OLS in the first step makes pHdres more effective in

detecting linear trends and because it applies pHdy to the residual, the issue causing the

invalidity of the asymptotic analysis for pHdy is avoided in pHdres’s asymptotic analysis.

We will test the effectiveness of pHdres in the next chapter.



Chapter 6

Simulations

In this chapter, we conduct a simulation study to compare the methods SIR, SAVE and

pHdres. We do not include the pHdy method, because it is not always reliable. We use the

dr package in R(R Core Team, 2015), first documented in Weisberg (2002) and revised

in Weisberg (2015). The dr package was specifically developed for dimension reduction

regression and it has implemented SIR, SAVE, pHdres, and IRE (not included in the

thesis). In terms of choosing the dimension d of S{Var[E(z|ỹ)]} (SIR), S(Σsave) (SAVE)

and S(Σezz)(pHdres), dr package used the same methods as we introduced in previous

Chapters. To evaluate and compare SIR, SAVE and pHdres’ performance in recovering

the central subspace, three different examples will be studied.

6.1 Example One:

We start with the simplest case: a linear model. Assume the true model is

y1 = x1 + x2 + x3 + ε, (6.1)

where x = (x1, . . . , x5)T follows a multivariate standard normal distribution, ε is normally

distributed and the xi’s and ε are independent. In this case, the central subspace exists

and is spanned by the vector l1 = (1, 1, 1, 0, 0)T .

We simulated 400 data points from the model (6.1). Since x is multivariate normally

distributed, we can apply SIR, SAVE and pHdres to recover the dependence relationship

between the covariates and the response variable. We ran the dr function with “method”

89
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equal to “sir”, “save”, “phdres” respectively and we repeated this on 1000 samples. For

SIR and SAVE, the number of slices h was set to 20. For the tests choosing the dimension

of S{Var[E(z|ỹ)]} (SIR), S(Σsave) (SAVE) and S(Σezz) (pHdres), we chose the significance

level to be 0.01 for better comparison. To facilitate the discussion, let k be the dimension

of the final estimate of the central subspace for each method.

We first look at the values of k chosen by tests for all simulations. Before we study the

results, it is important to note that the value of k for pHdres may be overestimated. We

recall that pHdres estimates the central subspace using the formula Sy|z = S(β) + Se|z

where β = Cov(z, y). In the algorithm of pHdres, we first compute β, which we record

as the first possible direction. Then we separately estimate the basis vectors that span

Se|z. Assume we estimate the basis vectors of Se|z to be {ι̂1, . . . , ι̂d}. We compute k as

k = 1 + d, the sum of dim(S(β)) and dim(Se|z). Since it is possible that β ∈ Se|z, k is

likely to be overestimated by one. As a side note, we mention that the reason we do not

directly orthogonalise the set {β̂, ι̂1, . . . , ι̂r} to find a basis for Sy|z and then determine

the value of k is that this orthogonalisation introduces additional errors and consequently

produces misleading results in most simulations. For SIR, k = d = dim[S{Var[E(z|ỹ)]}]

and for SAVE, k = d = dim(S(Σsave)).

Methods k = 0 k = 1 k = 2

SIR 0 991 9

SAVE 29 969 2

pHdres 0 987 13

Table 6.1: Value of k over 1000 simulations(α = 0.01)

We now study the table above. In this example, the desired value of k is one, because

the central subspace is one dimensional. From the table, we see that all three methods

performed satisfactorily, choosing k = 1 in at least 950 out of 1000 simulations. SIR

performed the best with the highest success rate (991/1000) in choosing k = 1 while SAVE

has the lowest success rate (987/1000). Because Se|z is a trivial space in this example,

pHdres did not overestimate k in this case.

Since the dimension of the central subspace is one, we computed the mean and standard

deviation (sd) of the components of the first computed direction (standardised), over 1000

simulations for each method. We denote the first computed direction as l̂1 = (l̂11, . . . , l̂15),

because it estimates l1.
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Methods l̂11 l̂12 l̂13 l̂14 l̂15

SIR mean 0.577 0.577 0.577 0.000 0.000
sd (5.81e-03) (5.57e-03) (5.56e-03) (6.85e-03) (6.73e-03)

SAVE mean 0.577 0.577 0.577 0.000 0.000
sd (5.96e-03) (5.98e-03) (5.96e-03) (7.45e-03) (7.26e-03)

pHdres mean 0.577 0.577 0.577 0.000 0.000
sd (2.40e-04) (2.40e-04) (2.27e-04) (2.88e-04) (2.77e-04)

Table 6.2: Means and standard deviations of l̂1 = (l̂11, . . . , l̂15)

The above table provides us with an general idea of the results of each method. From

the table, it seems all three methods have been successful in estimating the true direction

l1 = (1, 1, 1, 0, 0)T , as the mean of l̂1 for each method is in the same direction as l1. When

the standard deviation is considered, pHdres performed the best with the smallest sd for

each component while SIR and SAVE performed about the same. To better understand the

performances of the three methods, we looked at cosine of the angle between an estimated

direction and the true direction. Denote the angle between an estimated direction and the

true direction as θ (−180 ≤ θ ≤ 180). Since two estimates perform the same in estimating

the true direction when their associated angles are the opposite of each other, we computed

| cos(θ)| for each simulation. We summarize the results below.

Methods mean(| cos(θ)|) sd(| cos(θ)|)
SIR 0.9999061 7.670389e-05

SAVE 0.9998925 8.543894e-05

pHdres 0.9999998 1.184175e-07

Table 6.3: Means and standard deviations of | cos(θ)|

We know that the smaller the absolute value of the angle θ, the better its related estimated

direction is. Thus, a method performs well when | cos(θ)| of its estimates are close to

cos(0) = 1. From Table(6.3), we observe that all three methods performed satisfactorily.

All three means of | cos(θ)| are very close to 1 and variances of | cos(θ)| are close to 0.

pHdres performed the best with the highest mean and the smallest standard deviation.

The boxplots (6.1) show similar results. The performance of SIR and SAVE is about the

same.

Finally, we evaluate the efficiency of all three methods by comparing the time each method

took to run 1000 simulations. It is clear that SIR is a much more efficient method than

SAVE and pHdres. SIR only took around one fifth of the time required by pHdres and

one ninth of the time required by SAVE.
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Figure 6.1: Boxplots of | cos(θ)| for SIR, SAVE and pHdres

SIR SAVE pHdres

Time(seconds) 20.17 189.76 99.23

Table 6.4: Time required for 1000 simulations

Overall, all three methods are effective in detecting the central subspace. pHdres provided

the best estimates. This is not surprising, as pHdres uses ordinary least square regression

to identify linear trends. SIR and SAVE performed similarly but SIR is the most efficient

method.

6.2 Example Two:

We next consider a relatively complicated example. Consider the true model

y2 =
x1

(1 + (x2 + 2)2)
+ ε. (6.2)

Again assume x = (x1, . . . , x5)T follows a multivariate standard normal distribution, ε is

normally distributed and the xi’s and ε are independent. In this case, the central subspace

exists and is spanned by the vectors l1 = (1, 0, 0, 0, 0)T and l2 = (0, 1, 0, 0, 0)T .

To be consistent, we simulated 400 data points from model (6.2). For SIR and SAVE, we

set the number of slices h to 20. For the tests choosing the dimension of S{Var[E(z|ỹ)]}
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(SIR), S(Σsave) (SAVE) and S(Σezz) (pHdres), we used α = 0.01 to be consistent. For

each method, we repeated the simulation 1000 times. Results are summarized below.

Methods k = 0 k = 1 k = 2 k = 3 k = 4

SIR 0 0 987 13 0

SAVE 59 932 9 0 0

pHdres 0 0 0 989 11

Table 6.5: Value of k over 1000 simulations(α = 0.01)

Since the central subspace is spanned by the vectors l1 and l2, the desired value of k is 2.

We observe that SIR is the only method that chose k = 2 in most (987 out of 1000) of its

simulations. In terms of the method SAVE, the vast majority (991/1000) of simulations

chose the value k = 1; only 9 simulations chose the value k = 2. We will explore this

below when studying all the p-values for SAVE. pHdres overestimated the value of k in

all simulation. As we mentioned in the previous example, this overestimation is likely to

be caused by the fact that β = Cov(z, y) ∈ Se|z. To find out, we will study all first three

directions computed in each simulation by pHdres. If it is true that β = Cov(z, y) ∈ Se|z,

the first direction (the vector β) should be contained in the space spanned by the second

and the third directions (the basis vectors of Se|z).

To get a general idea of the outputs for each method, we list the means and standard

deviations (sd) of the components of the estimated directions (standardised) for the 1000

simulations.

SIR l̂i1 l̂i2 l̂i3 l̂i4 l̂i5
i = 1 mean 0.998 -0.002 -0.001 0.002 -0.000

sd (2.12e-03) (5.30e-02) (2.51e-02) (2.40e-02) (2.40e-02)

i = 2 mean -0.002 0.990 0.000 0.006 0.001
sd (7.29e-02) (6.67e-03) (6.73e-02) (6.53e-02) (7.00e-02)

Table 6.6: Means and standard deviations of computed directions (standardised) by
SIR

SAVE l̂i1 l̂i2 l̂i3 l̂i4 l̂i5
i = 1 mean 0.998 -0.002 -0.001 0.000 -0.001

sd (1.85e-03) (4.94e-02) (2.13e-02) (2.25e-02) (2.18e-02)

i = 2 mean -0.002 0.968 0.004 -0.003 0.001
sd (6.78e-02) (6.03e-02) (1.26e-01) (1.41e-01) (1.37e-01)

Table 6.7: Means and standard deviations of computed directions (standardised) by
SAVE

From above tables, we see that the two directions estimated by SIR are basically in the

same directions as that of l1 = (1, 0, 0, 0, 0)T and l2 = (0, 1, 0, 0, 0)T . SAVE provides
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pHdres l̂i1 l̂i2 l̂i3 l̂i4 l̂i5
i = 1 mean 0.995 -0.001 -0.003 0.002 0.000

sd (3.57e-03) (6.51e-02) (4.05e-02) (3.98e-02) (4.06e-02)

i = 2 mean 0.701 0.698 -0.003 0.005 0.000
sd (3.41e-02) (3.41e-02) (7.94e-02) (8.09e-02) (7.85e-02)

i = 3 mean 0.698 -0.701 -0.002 -0.002 0.004
sd (3.43e-02) (3.44e-02) (8.04e-02) (8.10e-02) (7.94e-02)

Table 6.8: Means and standard deviations of computed directions (standardised) by
pHdres

similar results. Although the inference tests indicate that it is highly likely only the first

direction computed is in the central subspace, Table (6.7) shows that the second direction

computed by SAVE is in the central subspace as well. The first and second directions

computed by SAVE look like good estimates of l1 and l2 respectively. Fairly different results

are provided by pHdres. From Table(6.10), the three directions estimated by pHdres

are basically in the directions of (1, 0, 0, 0, 0)T , (1, 1, 0, 0, 0)T and (1,−1, 0, 0, 0)T . These

results suggest that S(β) is spanned by (1, 0, 0, 0, 0)T and Se|z is spanned by (1, 1, 0, 0, 0)T

and (1,−1, 0, 0, 0)T . If this is true, we observe that S(β) ⊂ Se|x and Sy|x = Se|x =

S((1, 0, 0, 0, 0)T , (0, 1, 0, 0, 0)T ). Then, S(β) ⊂ Se|x explains the overestimation of k and

the first three directions estimated by pHdres provide a good estimate of the central

subspace.

To better understand the estimated directions, we also computed the absolute value of the

cosine of angles between the estimated directions and the true directions l1, l2. Denote the

angle between l1 and its estimate as θ1 and the angle between l2 and its estimate as θ2.

Also let l3 = (1, 1, 0, 0, 0)T and l4 = (1,−1, 0, 0, 0)T . For pHdres, to test our conjecture,

we computed the cosines of angles between the first estimated direction and l1, the second

estimated direction and l3, and the third estimated direction and l4. We refer to these

angles as θ1, θ3 and θ4.

Methods (| cos(θ1)|) (| cos(θ2)|) (| cos(θ3)|) (| cos(θ4)|)
SIR mean 0.998 0.990

sd (2.18e-03) (6.66e-03)

SAVE mean 0.998 0.968
sd (1.85e-03) (6.04e-02)

pHdres mean 0.995 0.989 0.989
sd (3.57e-03) (8.34e-03) (9.26e-03)

Table 6.9: Means and standard deviations of | cos(θi)|, i = 1, 2, 3, 4

Due to the similar results produced by SIR and SAVE, we compare their estimates for

l1 and l2. We look at the distributions of | cos(θ1)|, | cos(θ3)| and | cos(θ4)| for pHdres
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Figure 6.2: Boxplots of | cos(θ1)| for SIR and SAVE
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Figure 6.3: Boxplots of | cos(θ2)| for SIR and SAVE

separately.

From Table 6.9, Figure 6.2 and Figure 6.3, we see that both SIR and SAVE estimated l1

and l2 well with means close to 1 and standard deviations close to 0. To be more specific,
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Figure 6.4: Boxplots of | cos(θ1)|, | cos(θ3)|,| cos(θ4)| for pHdres

SIR performed about the same as SAVE in estimating l1, but much better than SAVE

in estimating l2. We observe from Figure 6.3 that | cos(θ2)| for SIR has less spread than

SAVE. For SAVE, although the majority of | cos(θ2)| are close to 1, there are many cases

with the value of | cos(θ2)| close to 0 instead. We hence conclude that SIR performed

better in this example than SAVE. Nevertheless, the first two directions computed by

SAVE still gave satisfactory estimates of l1 and l2.

For pHdres, we see from Figure 6.4 that all three distributions of | cos(θ1)|, | cos(θ3)|,| cos(θ4)|

are left skewed with variance close to 0. For each distribution, even the smallest value is

above 0.90. Therefore, pHdres estimates l1, l3, l4 well. Consequently, pHdres gives good

estimates of the central subspace.

Finally, we plot the values of | cos(θ1)| and | cos(θ2)| against their corresponding p-values

for SAVE to examine the power of its test for choosing k.

Figure 6.5 shows the test of SAVE is effective in rejecting the null hypothesis H0 : k = 0.

However, Figure (6.6) indicates a serious problem. We observe that although nearly all

| cos(θ2)| are close to 1, their corresponding p-values are nearly uniformly distributed.

SAVE seems to be ineffective in testing the hypothesis k = 1 against k > 1.
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Figure 6.5: | cos(θ1)| vs p-values for SAVE
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Figure 6.6: | cos(θ2)| vs p-values for SAVE

Finally, we list the time required by each method to run 1000 simulations. The results are

similar to those of example one. SIR is the most efficient method while SAVE took the

longest time.
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SIR SAVE pHdres

Time(seconds) 21.94 189.21 95.09

Table 6.10: Time required for 1000 simulations

Overall, we see that all three methods gave satisfactory estimates of the central subspace.

Apart being the most time-efficient, SIR gave the best and most straightforward results.

pHdres is also very effective but its results require more interpretation. SAVE performed

well in estimating l1, but less well when estimating l2. Still, the average estimates from

1000 simulations of SAVE are satisfactory. Finally, we point out that SAVE does not seem

to be effective in choosing the correct value of k.

6.3 Example Three:

In our final example, we consider a model that includes both a linear part and a quadratic

part to test each method’s power in detecting linear and nonlinear trends. Let the true

model be

y3 = (x1 + x2) + (x3 + x4)2 + ε. (6.3)

Here, x = (x1, . . . , x5)T has a multivariate standard normal distribution with mean 0, ε is

normally distributed and is independent of x. Again, we simulated 400 data points using

this model and repeated the simulation 1000 times. For SIR and SAVE, we set the number

of slices h to 20. For the tests choosing the dimension of S{Var[E(z|ỹ)]} (SIR), S(Σsave)

(SAVE) and S(Σezz) (pHdres), we used α = 0.01. In this case, the central subspace exists

and is spanned by the vectors l1 = (1, 1, 0, 0, 0)T and l2 = (0, 0, 1, 1, 0)T .

Methods k = 1 k = 2 k = 3

SIR 978 21 1

SAVE 906 93 1

pHdres 0 984 16

Table 6.11: Value of k over 1000 simulations(α = 0.01)

We start by looking at the values of k chosen by the methods. In this case, the desired

value of k is 2. Both SIR and SAVE estimated k to be smaller than 2 in the majority (over

900 out of 1000) of simulations. This result is expected from SIR, as we showed in Chapter

4 that SIR is ineffective in detecting the quadratic part due to the symmetry pattern. We

expect that SIR is only able to provide estimates for l1. The small k value provided by

SAVE is unexpected, as SAVE was specifically developed to make up for the defect of
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SIR in diagnosing symmetry dependence. SAVE should have been able to estimate both

l1 and l2. From previous examples, we may suspect this unsatisfactory performance of

SAVE is caused by its problems choosing k. We will explore this more below. Among all

three methods, pHdres is the only method that gave the desired value of k. It estimated

k = 2 in 984 out of 1000 simulations. However, because it is possible that pHdres may

overestimate the value of k, we need to examine the results to evaluate the performance

of pHdres.

We next look at the means and standard deviations (sd) of the components of standardised

estimates computed in 1000 simulations for each method.

Methods l̂11 l̂12 l̂13 l̂14 l̂15

SIR mean 0.702 0.701 0.003 -0.001 -0.002
sd (1.56e-03) (1.60e-03) (3.81e-03) (4.18e-03) (3.80e-03)

SAVE* mean 0.692 0.689 0.007 0.004 -0.002
sd (8.02e-02) (8.01e-02) (1.10e-01) (1.05e-01) (1.07e-01)

pHdres mean 0.684 0.678 -0.008 -0.007 0.000
sd (6.93e-02) (7.15e-02) (1.66e-01) (1.60e-01) (9.80e-02)

Table 6.12: Means and standard deviations of l̂1 = (l̂11, . . . , l̂15)

Methods l̂21 l̂22 l̂23 l̂24 l̂25

SIR mean -0.015 0.013 0.011 -0.011 -0.007
sd (3.59e-01) (3.57e-01) (4.93e-01) (5.08e-01) (4.92e-01)

SAVE* mean -0.003 -0.005 0.698 0.701 -0.002
sd (7.98e-02) (7.81e-02) (4.92e-02) (4.97e-02) (6.70e-02)

pHdres mean -0.002 -0.002 0.701 0.703 0.000
sd (5.88e-02) (5.94e-02) (4.42e-02) (4.42e-02) (5.59e-02)

Table 6.13: Means and standard deviations of l̂2 = (l̂21, . . . , l̂25)

We put a star over the method SAVE because, unlike SIR and pHdres, SAVE computed

an estimate for l2 first and then an estimate for l1. In other words, SAVE concluded that

the estimate for l2 was associated with a larger eigenvalue that the estimate for l1. Since

l2 corresponds to the quadratic part, SAVE might be more sensitive to the nonlinear trend

than the linear trend.

From Table 6.12, we see that all three methods estimated l1 satisfactorily with all three

means basically in the same direction as l1. However, we observe that SIR failed in

estimating l2. The mean of its estimations for l2 is close to a zero vector. This is consistent

with the results of SIR for choosing k. On the other hand, both SAVE and pHdres

performed well in estimating l2. Therefore, pHdres did not overestimate the value of k

but the test of SAVE is not effective in choosing the correct value for k.
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We next computed the cosine of the angles between the estimates and the true directions.

Again, denote the angle between l1 and its estimate as θ1 and the angle between l2 and

its estimate as θ2.

Methods (| cos(θ1)|) (| cos(θ2)|)
SIR mean 0.992 0.417

sd (5.85e-03) (2.84e-01)

SAVE mean 0.976 0.989
sd (2.15e-02) (8.47e-03)

pHdres mean 0.963 0.993
sd (3.22e-02) (5.32e-03)

Table 6.14: Means and standard deviations of | cos(θ1)|, | cos(θ2)|
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Figure 6.7: Boxplots of | cos(θ1)| for SIR, SAVE and pHdres

We now examine the distributions of | cos(θ1)|, | cos(θ2)|. We first look at the distribution

of | cos(θ1)|. From Table 6.14, all three methods gave satisfactory estimates for l1 with all

means above 0.95 and variances smaller than 3.3e-02. Among the three methods, SIR gave

the best estimates and SAVE gave the second best estimates. The boxplot 6.7 indicates

similar results. The | cos(θ1)| for SIR has the smallest box width and shortest whisker

lengths. Although the estimates from pHdres are satisfactory in general, they are more

widely spread and contain more small values.

In terms of the distributions of | cos(θ2)|, we see from the left sub-figure of Figure 6.8

that SIR failed in estimating l2. SAVE and pHdres gave satisfactory estimates for l2.
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Figure 6.8: Boxplots of | cos(θ2)| for SIR, SAVE and pHdres

When compared with each other (see the right sub-figure 6.8), we conclude that pHdres

provided better estimates for l2 than SAVE. The distribution of | cos(θ2)| for pHdres has

higher mean and smaller variance than SAVE. Also, the | cos(θ2)| for estimates of pHdres

are more tightly distributed than for SAVE.

Similar to the previous example, although SAVE is able to provide good estimates for both

l1 and l2, the test suggested that SAVE should only estimate a one dimensional subspace

of the central subspace. We plotted | cos(θi)| against the p-values for i = 1, 2 to explore

this situation further.

We see that the tests have been useful in suggesting that the first directions computed

(estimates for l2) are in the central subspace. However, the test of SAVE failed to reject

the null hypothesis H0 : k = 1 in most simulations.

Finally, the relative times required for each method are consistent with the previous ex-

amples. SIR is the most efficient method while SAVE is the most time-consuming method.

SIR SAVE pHdres

Time(seconds) 20.33 186.98 95.02

Table 6.15: Time required for 1000 simulations
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Figure 6.9: | cos(θ2)| vs p-values for SAVE
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Figure 6.10: | cos(θ1)| vs p-values for SAVE

The example supports our previous claim that SIR is unable to diagnose symmetry de-

pendence. Since (x3+x4)2 is symmetrically distributed, SIR failed to detect the direction

l2 = (0, 0, 1, 1, 0). Both SAVE and pHdres successfully estimated both l1 and l2. We also

find that SAVE is more effective in detecting the nonlinear trend than the linear trend in

this example; SAVE gave estimates for l2 first.
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6.4 Conclusion

Based on all three examples, we recommend SIR when we are sure there is no symmetry

dependence and pHdres in other cases. When there is no symmetry dependence between

the covariates and the response variable, SIR gives the best estimates and is the most

efficient method. When it is not clear whether symmetry dependence exits, pHdres is a

good option. pHdres provides satisfactory estimates within a moderate period of time in

all three examples. However, since pHdres estimates the central subspace by estimating

two subspace separately, we may need to be careful when interpreting results from pHdres.

Finally, although SAVE also provides good estimates for all three examples, SAVE has

some serious drawbacks. Firstly, it is a very time-consuming method. In all three examples,

it takes approximately nine times and twice as much time as SIR and pHdres respectively.

Secondly and more importantly, the method currently used by SAVE for choosing k is not

reliable.
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